首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
RNAi mechanisms in Caenorhabditis elegans   总被引:5,自引:0,他引:5  
Grishok A 《FEBS letters》2005,579(26):5932-5939
  相似文献   

2.
Genome-wide RNAi screening in Caenorhabditis elegans   总被引:19,自引:0,他引:19  
In Caenorhabditis elegans, introduction of double-stranded RNA (dsRNA) results in the specific inactivation of an endogenous gene with corresponding sequence; this technique is known as RNA interference (RNAi). It has previously been shown that RNAi can be performed by direct microinjection of dsRNA into adult hermaphrodite worms, by soaking worms in a solution of dsRNA, or by feeding worms Escherichia coli expressing target-gene dsRNA. We have developed a simple optimized protocol exploiting this third mode of dsRNA introduction, RNAi by feeding, which allows rapid and effective analysis of gene function in C. elegans. Furthermore, we have constructed a library of bacterial strains corresponding to roughly 86% of the estimated 19,000 predicted genes in C. elegans, and we have used it to perform genome-wide analyses of gene function. This library is publicly available, reusable resource allowing for rapid large-scale RNAi experiments. We have used this library to perform genome-wide analyses of gene function in C. elegans. Here, we describe the protocols used for bacterial library construction and for high-throughput screening in C. elegans using RNAi by feeding.  相似文献   

3.
Progress in aging research has identified genetic and environmental factors that regulate longevity across species. The nematode worm Caenorhabditis elegans is a genetically tractable model system that has been widely used to investigate the molecular mechanisms of aging, and the development of RNA interference (RNAi) technology has provided a powerful tool for performing large-scale genetic screens in this organism. Genome-wide screens have identified hundreds of genes that influence lifespan, many of which fall into distinct functional classes and pathways. The purpose of this review is to summarize the results of large-scale RNAi longevity screens in C. elegans, and to provide an in-depth comparison and analysis of their methodology and most significant findings.  相似文献   

4.
RNAi is an evolutionarily conserved gene-silencing phenomenon that can be triggered by exogenous delivery of double stranded RNA to organisms. In Caenorhabditis elegans, the response to dsRNA is remarkably robust, and systemic RNAi responses are often observed. We have taken a genetic approach using this organism to better understand the mechanisms that facilitate RNAi. By analyzing strains of RNAi-defective mutants, we have uncovered an unexpected role for ABC transporters in RNAi and related silencing mechanisms. Ten of the sixty ABC transporter genes encoded in the C. elegans genome are required for robust RNAi. We will present data that highlights common features of these genes relative to their roles in RNAi, including genetic interactions with other components of the RNAi machinery. We will also describe unique roles for some transporter genes in endogenous RNAi-related processes.  相似文献   

5.
We wish to understand how organ-specific structures assemble during embryonic development. In the present paper, we consider what determines the subapical position of the terminal web in the intestinal cells of the nematode Caenorhabditis elegans. The terminal web refers to the organelle-depleted, intermediate filament-rich layer of cytoplasm that underlies the apical microvilli of polarized epithelial cells. It is generally regarded as the anchor for actin rootlets protruding from the microvillar cores. We demonstrate that: (i) the widely used monoclonal antibody MH33 reacts (only) with the gut-specific intermediate filament protein encoded by the ifb-2 gene; (ii) IFB-2 protein accumulates near the gut lumen beginning at the lima bean stage of embryogenesis and remains associated with the gut lumen into adulthood; and (iii) as revealed by immunoelectron microscopy, IFB-2 protein is confined to a discrete circumferential subapical layer within the intestinal terminal web (known in nematodes as the "endotube"); this layer joins directly to the apical junction complexes that connect adjacent gut cells. To investigate what determines the disposition of the IFB-2-containing structure as the terminal web assembles during development, RNAi was used to remove the functions of gene products previously shown to be involved in the overall apicobasal polarity of the developing gut cell. Removal of dlg-1, ajm-1, or hmp-1 function has little effect on the overall position or continuity of the terminal web IFB-2-containing layer. In contrast, removal of the function of the let-413 gene leads to a basolateral expansion of the terminal web, to the point where it can now extend around the entire circumference of the gut cell. The same treatment also leads to concordant basolateral expansion of both gut cell cortical actin and the actin-associated protein ERM-1. LET-413 has previously been shown to be basolaterally located and to prevent the basolateral expansion of several individual apical proteins. In the present context, we conclude that LET-413 is also necessary to maintain the entire terminal web or brush border assembly at the apical surface of C. elegans gut cells, a dramatic example of the so-called "fence" function ascribed to epithelial cell junctions. On the other hand, LET-413 is not necessary to establish this apical location during early development. Finally, the distance at which the terminal web intermediate filament layer lies beneath the gut cell surface (both apical and basolateral) must be determined independently of apical junction position.  相似文献   

6.
7.
Bargmann CI 《Genome biology》2001,2(2):reviews1005.1-reviews10053
Two recent chromosome-wide screens for phenotypes caused by RNA-mediated interference (RNAi) in Caenorhabditis elegans have increased our understanding of essential genes in nematodes. These papers represent a major advance in functional genomics.  相似文献   

8.
RNA interference (RNAi) is a widespread and widely exploited phenomenon. Here, we show that changing inositol 1,4,5‐trisphosphate (IP3) signalling alters RNAi sensitivity in Caenorhabditis elegans. Reducing IP3 signalling enhances sensitivity to RNAi in a broad range of genes and tissues. Conversely up‐regulating IP3 signalling decreases sensitivity. Tissue‐specific rescue experiments suggest IP3 functions in the intestine. We also exploit IP3 signalling mutants to further enhance the sensitivity of RNAi hypersensitive strains. These results demonstrate that conserved cell signalling pathways can modify RNAi responses, implying that RNAi responses may be influenced by an animal's physiology or environment.  相似文献   

9.
10.
11.
Genome-wide analysis of gene function is essential for the post-genome era, and development of efficient and economical technology suitable for it has been in demand. Here we report a large-scale inactivation of the expressed genes in the nematode Caenorhabditis elegans. For this purpose, we have established a high-throughput "RNAi-by-soaking" methodology by modifying the conventional RNAi method [1, 2]. A set of tag-sequenced, nonredundant cDNAs corresponding to approximately 10,000 genes [3] (representing half of the predicted genes [4]) was used for the systematic RNAi analysis. We have processed approximately 2500 genes to date. In development, 27% of them showed detectable phenotypes, such as embryonic lethality, post-embryonic lethality, sterility, and morphological abnormality. Of these, we analyzed the phenotypes of F1 sterility in detail, and we have identified 24 genes that might play important roles in germline development. Combined with the ongoing analysis of expression patterns of these cDNAs [3, 5], the functional information obtained in this work will provide a starting point for the further analysis of each gene. Another finding from this screening is that the incidence of essential genes is significantly lower in the X chromosome than in the autosomes.  相似文献   

12.
Septins are conserved GTPases that form heteromultimeric complexes and assemble into filaments that play a critical role in cell division and polarity. Results from budding and fission yeast indicate that septin complexes form around a tetrameric core. However, the molecular structure of the core and its influence on the polarity of septin complexes and filaments is poorly defined. The septin complex of the nematode Caenorhabditis elegans is formed entirely by the core septins UNC-59 and UNC-61. We show that UNC-59 and UNC-61 form a dimer of coiled-coil-mediated heterodimers. By electron microscopy, this heterotetramer appears as a linear arrangement of four densities representing the four septin subunits. Fusion of GFP to the N termini of UNC-59 and UNC-61 and subsequent electron microscopic visualization suggests that the sequence of septin subunits is UNC-59/UNC-61/UNC-61/UNC-59. Visualization of GFP extensions fused to the extremity of the C-terminal coiled coils indicates that these extend laterally from the heterotetrameric core. Together, our study establishes that the septin core complex is symmetric, and suggests that septins form nonpolar filaments.  相似文献   

13.
14.
The phenomenon of RNA-mediated interference (RNAi) was first discovered in the nematode Caenorhabditis elegans, in which introduction of double-stranded RNA causes specific inactivation of genes with corresponding sequences. Technical advances in RNAi methodology and the availability of the complete genome sequence have enabled the high-throughput, genome-wide RNAi analysis of this organism. Several groups have used large-scale RNAi to systematically examine every C. elegans gene for knock-down phenotypes, providing basal information to be mined in more detailed studies. Now, in addition to functional genomic RNAi analyses, high-throughput RNAi is also routinely used for rapid, genome-wide screens for genes involved in specific biological processes. The integration of high-throughput RNAi experiments with other large-scale data, such as DNA microarrays and protein-protein interaction maps, enhances the speed and reliability of such screens. The accumulation of RNAi phenotype data dramatically accelerates our understanding of this organism at the genetic level.  相似文献   

15.
Much of the pioneering work on the genetics of cell cycle regulation was accomplished using budding and fission yeast. The relative simplicity of these single-celled organisms allowed investigators to readily identify and assign roles to individual genes. While the molecular mechanisms worked out in yeast are more or less identical to those operating in higher organisms, additional layers of control must exist in multicellular organisms to coordinate the timing of developmental events occurring in different cells and tissues. Here we discuss experimental approaches for studying cell cycle processes in the nematode Caenorhabditis elegans.  相似文献   

16.
Lipid droplets (LDs) are highly conserved multifunctional cellular organelles and aberrant lipid storage in LDs can lead to many metabolic diseases. However, the molecular mechanisms governing lipid dynamic changes remain elusive, and the high-throughput screen of genes influencing LD morphology was limited by lacking specific LD marker proteins in the powerful genetic tool Caenorhabditis elegans. In this study, we established a new method to conduct whole-genome RNAi screen using LD resident protein DHS-3 as a LD marker, and identified 78 genes involved in significant LD morphologic changes. Among them, mthf-1, as well as a series of methylation-related genes, was found dramatically influencing lipid metabolism. SREBP-1 and SCD1 homologs in C. elegans were involved in the lipid metabolic change of mthf-1(RNAi) worms, and the regulation of ATGL-1 also contributed to it by decreasing triacylglycerol (TAG) hydrolysis. Overall, this study not only identified important genes involved in LD dynamics, but also provided a new tool for LD study using C. elegans, with implications for the study of lipid metabolic diseases.  相似文献   

17.
Chromosome ends have been implicated in the meiotic processes of the nematode Caenorhabditis elegans. Cytological observations have shown that chromosome ends attach to the nuclear membrane and adopt kinetochore functions. In this organism, centromeric activity is highly regulated, switching from multiple spindle attachments all along the chromosome during mitotic division to a single attachment during meiosis. C. elegans chromosomes are functionally monocentric during meiosis. Earlier genetic studies demonstrated that the terminal regions of the chromosomes are not equivalent in their meiotic potentials. There are asymmetries in the abilities of the ends to recombine when duplicated or deleted. In addition, mutations in single genes have been identified that mimic the meiotic effects of a terminal truncation of the X chromosome. The recent cloning and characterization of the C. elegans telomeres has provided a starting point for the study of chromosomal elements mediating the meiotic process.  相似文献   

18.
Invasive nucleic acids such as transposons and viruses usually exhibit aberrant characteristics, e.g., unpaired DNA or abnormal double-stranded RNA. Organisms employ a variety of strategies to defend themselves by distinguishing self and nonself substances and disabling these invasive nucleic acids. Furthermore, they have developed ways to remember this exposure to invaders and transmit the experience to their descendants. The mechanism underlying this inheritance has remained elusive. Recent research has shed light on the initiation and maintenance of RNA-mediated inherited gene silencing. Small regulatory RNAs play a variety of crucial roles in organisms, including gene regulation, developmental timing, antiviral defense, and genome integrity, via a process termed as RNA interference (RNAi). Recent research has revealed that small RNAs and the RNAi machinery are engaged in establishing and promoting transgenerational gene silencing. Small RNAs direct the RNAi and chromatin modification machinery to the cognate nucleic acids to regulate gene expression and epigenetic alterations. Notably, these acquired small RNAs and epigenetic changes persist and are transmitted from parents to offspring for multiple generations. Thus, RNAi is a vital determinant of the inheritance of gene silencing and acts as a driving force of evolution.  相似文献   

19.
One of the central goals of developmental neurobiology is to describe and understand the multi-tiered molecular events that control the progression of a fertilized egg to a terminally differentiated neuron. In the nematode Caenorhabditis elegans, the progression from egg to terminally differentiated neuron has been visually traced by lineage analysis. For example, the two gustatory neurons ASEL and ASER, a bilaterally symmetric neuron pair that is functionally lateralized, are generated from a fertilized egg through an invariant sequence of 11 cellular cleavages that occur stereotypically along specific cleavage planes. Molecular events that occur along this developmental pathway are only superficially understood. We take here an unbiased, genome-wide approach to identify genes that may act at any stage to ensure the correct differentiation of ASEL. Screening a genome-wide RNAi library that knocks-down 18,179 genes (94% of the genome), we identified 245 genes that affect the development of the ASEL neuron, such that the neuron is either not generated, its fate is converted to that of another cell, or cells from other lineage branches now adopt ASEL fate. We analyze in detail two factors that we identify from this screen: (1) the proneural gene hlh-14, which we find to be bilaterally expressed in the ASEL/R lineages despite their asymmetric lineage origins and which we find is required to generate neurons from several lineage branches including the ASE neurons, and (2) the COMPASS histone methyltransferase complex, which we find to be a critical embryonic inducer of ASEL/R asymmetry, acting upstream of the previously identified miRNA lsy-6. Our study represents the first comprehensive, genome-wide analysis of a single neuronal cell fate decision. The results of this analysis provide a starting point for future studies that will eventually lead to a more complete understanding of how individual neuronal cell types are generated from a single-cell embryo.  相似文献   

20.
Zhu GD  L'Hernault SW 《Genetics》2003,165(1):145-157
Caenorhabditis elegans spermatid formation involves asymmetric partitioning of cytoplasm during the second meiotic division. This process is mediated by specialized ER/Golgi-derived fibrous body-membranous organelles (FB-MOs), which have a fibrous body (FB) composed of bundled major sperm protein filaments and a vesicular membranous organelle (MO). spe-39 mutant spermatocytes complete meiosis but do not usually form spermatids. Ultrastructural examination of spe-39 spermatocytes reveals that MOs are absent, while FBs are disorganized and not surrounded by the membrane envelope usually observed in wild type. Instead, spe-39 spermatocytes contain many small vesicles with internal membranes, suggesting they are related to MOs. The spe-39 gene was identified and it encodes a novel hydrophilic protein. Immunofluorescence with a specific SPE-39 antiserum reveals that it is distributed through much of the cytoplasm and not specifically associated with FB-MOs in spermatocytes and spermatids. The spe-39 gene has orthologs in Drosophila melanogaster and humans but no homolog was identified in the yeast genome. This suggests that the specialized membrane biogenesis steps that occur during C. elegans spermatogenesis are part of a conserved process that requires SPE-39 homologs in other metazoan cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号