首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net.  相似文献   

2.
The process of inferring phylogenetic trees from molecular sequences almost always starts with a multiple alignment of these sequences but can also be based on methods that do not involve multiple sequence alignment. Very little is known about the accuracy with which such alignment-free methods recover the correct phylogeny or about the potential for increasing their accuracy. We conducted a large-scale comparison of ten alignment-free methods, among them one new approach that does not calculate distances and a faster variant of our pattern-based approach; all distance-based alignment-free methods are freely available from http://www.bioinformatics.org.au (as Python package decaf+py). We show that most methods exhibit a higher overall reconstruction accuracy in the presence of high among-site rate variation. Under all conditions that we considered, variants of the pattern-based approach were significantly better than the other alignment-free methods. The new pattern-based variant achieved a speed-up of an order of magnitude in the distance calculation step, accompanied by a small loss of tree reconstruction accuracy. A method of Bayesian inference from k-mers did not improve on classical alignment-free (and distance-based) methods but may still offer other advantages due to its Bayesian nature. We found the optimal word length k of word-based methods to be stable across various data sets, and we provide parameter ranges for two different alphabets. The influence of these alphabets was analyzed to reveal a trade-off in reconstruction accuracy between long and short branches. We have mapped the phylogenetic accuracy for many alignment-free methods, among them several recently introduced ones, and increased our understanding of their behavior in response to biologically important parameters. In all experiments, the pattern-based approach emerged as superior, at the expense of higher resource consumption. Nonetheless, no alignment-free method that we examined recovers the correct phylogeny as accurately as does an approach based on maximum-likelihood distance estimates of multiply aligned sequences.  相似文献   

3.
Explaining the diversity of languages across the world is one of the central aims of typological, historical, and evolutionary linguistics. We consider the effect of language contact-the number of non-native speakers a language has-on the way languages change and evolve. By analysing hundreds of languages within and across language families, regions, and text types, we show that languages with greater levels of contact typically employ fewer word forms to encode the same information content (a property we refer to as lexical diversity). Based on three types of statistical analyses, we demonstrate that this variance can in part be explained by the impact of non-native speakers on information encoding strategies. Finally, we argue that languages are information encoding systems shaped by the varying needs of their speakers. Language evolution and change should be modeled as the co-evolution of multiple intertwined adaptive systems: On one hand, the structure of human societies and human learning capabilities, and on the other, the structure of language.  相似文献   

4.
Sayyari  Erfan  Mirarab  Siavash 《BMC genomics》2016,17(10):783-113

Background

Inferring species trees from gene trees using the coalescent-based summary methods has been the subject of much attention, yet new scalable and accurate methods are needed.

Results

We introduce DISTIQUE, a new statistically consistent summary method for inferring species trees from gene trees under the coalescent model. We generalize our results to arbitrary phylogenetic inference problems; we show that two arbitrarily chosen leaves, called anchors, can be used to estimate relative distances between all other pairs of leaves by inferring relevant quartet trees. This results in a family of distance-based tree inference methods, with running times ranging between quadratic to quartic in the number of leaves.

Conclusions

We show in simulated studies that DISTIQUE has comparable accuracy to leading coalescent-based summary methods and reduced running times.
  相似文献   

5.
Reconstructing a tree of life by inferring evolutionary history is an important focus of evolutionary biology. Phylogenetic reconstructions also provide useful information for a range of scientific disciplines such as botany, zoology, phylogeography, archaeology and biological anthropology. Until the development of protein and DNA sequencing techniques in the 1960s and 1970s, phylogenetic reconstructions were based on fossil records and comparative morphological/physiological analyses. Since then, progress in molecular phylogenetics has compensated for some of the shortcomings of phenotype-based comparisons. Comparisons at the molecular level increase the accuracy of phylogenetic inference because there is no environmental influence on DNA/peptide sequences and evaluation of sequence similarity is not subjective. While the number of morphological/physiological characters that are sufficiently conserved for phylogenetic inference is limited, molecular data provide a large number of datapoints and enable comparisons from diverse taxa. Over the last 20 years, developments in molecular phylogenetics have greatly contributed to our understanding of plant evolutionary relationships. Regions in the plant nuclear and organellar genomes that are optimal for phylogenetic inference have been determined and recent advances in DNA sequencing techniques have enabled comparisons at the whole genome level. Sequences from the nuclear and organellar genomes of thousands of plant species are readily available in public databases, enabling researchers without access to molecular biology tools to investigate phylogenetic relationships by sequence comparisons using the appropriate nucleotide substitution models and tree building algorithms. In the present review, the statistical models and algorithms used to reconstruct phylogenetic trees are introduced and advances in the exploration and utilization of plant genomes for molecular phylogenetic analyses are discussed.  相似文献   

6.
The random accumulation of variations in the human genome over time implicitly encodes a history of how human populations have arisen, dispersed, and intermixed since we emerged as a species. Reconstructing that history is a challenging computational and statistical problem but has important applications both to basic research and to the discovery of genotype-phenotype correlations. We present a novel approach to inferring human evolutionary history from genetic variation data. We use the idea of consensus trees, a technique generally used to reconcile species trees from divergent gene trees, adapting it to the problem of finding robust relationships within a set of intraspecies phylogenies derived from local regions of the genome. Validation on both simulated and real data shows the method to be effective in recapitulating known true structure of the data closely matching our best current understanding of human evolutionary history. Additional comparison with results of leading methods for the problem of population substructure assignment verifies that our method provides comparable accuracy in identifying meaningful population subgroups in addition to inferring relationships among them. The consensus tree approach thus provides a promising new model for the robust inference of substructure and ancestry from large-scale genetic variation data.  相似文献   

7.
Accurate phylogenetic reconstruction methods are inherently computationally heavy and therefore are limited to relatively small numbers of taxa. Supertree construction is the task of amalgamating small trees over partial sets into a big tree over the complete taxa set. The need for fast and accurate supertree methods has become crucial due to the enormous number of new genomic sequences generated by modern technology and the desire to use them for classification purposes. In particular, the Assembling the Tree of Life (ATOL) program aims at constructing the evolutionary history of all living organisms on Earth. When dealing with unrooted trees, a quartet - an unrooted tree over four taxa - is the most basic piece of phylogenetic information. Therefore, quartet amalgamation stands at the heart of any supertree problem as it concerns combining many minimal pieces of information into a single, coherent, and more comprehensive piece of information.We have devised an extremely fast algorithm for quartet amalgamation and implemented it in a very efficient code. The new code can handle over a hundred millions of quartet trees over several hundreds of taxa with very high accuracy.  相似文献   

8.
Phylogenetic trees based on gene content   总被引:2,自引:0,他引:2  
Comparing gene content between species can be a useful approach for reconstructing phylogenetic trees. In this paper, we derive a maximum-likelihood estimation of evolutionary distance between species under a simple model of gene genesis and gene loss. Using simulated data on a biological tree with 107 taxa (and on a number of randomly generated trees), we compare the accuracy of tree reconstruction using this ML distance measure to an earlier ad hoc distance. We then compare these distance-based approaches to a character-based tree reconstruction method (Dollo parsimony) which seems well suited to the analysis of gene content data. To simplify simulations, we give a formal proof of the well-known 'fact' that the Dollo parsimony score is independent of the choice of root. Our results show a consistent trend, with the character-based method and ML distance measure outperforming the earlier ad hoc distance method. AVAILABILITY: http://www.ab.informatik.uni-tuebingen.de/software/genecontent/welcome_en.html  相似文献   

9.
MOTIVATION: Reconstructing evolutionary trees is an important problem in biology. A response to the computational intractability of most of the traditional criteria for inferring evolutionary trees has been a focus on new criteria, particularly quartet-based methods that seek to merge trees derived on subsets of four species from a given species-set into a tree for that entire set. Unfortunately, most of these methods are very sensitive to errors in the reconstruction of the trees for individual quartets of species. A recently developed technique called quartet cleaning can alleviate this difficulty in certain cases by using redundant information in the complete set of quartet topologies for a given species-set to correct such errors. RESULTS: In this paper, we describe two new local vertex quartet cleaning algorithms which have optimal time complexity and error-correction bound, respectively. These are the first known local vertex quartet cleaning algorithms that are optimal with respect to either of these attributes.  相似文献   

10.
11.
The development of increasingly popular multiobjective metaheuristics has allowed bioinformaticians to deal with optimization problems in computational biology where multiple objective functions must be taken into account. One of the most relevant research topics that can benefit from these techniques is phylogenetic inference. Throughout the years, different researchers have proposed their own view about the reconstruction of ancestral evolutionary relationships among species. As a result, biologists often report different phylogenetic trees from a same dataset when considering distinct optimality principles. In this work, we detail a multiobjective swarm intelligence approach based on the novel Artificial Bee Colony algorithm for inferring phylogenies. The aim of this paper is to propose a complementary view of phylogenetics according to the maximum parsimony and maximum likelihood criteria, in order to generate a set of phylogenetic trees that represent a compromise between these principles. Experimental results on a variety of nucleotide data sets and statistical studies highlight the relevance of the proposal with regard to other multiobjective algorithms and state-of-the-art biological methods.  相似文献   

12.
This paper deals with phylogenetic inference when the variability of substitution rates across sites (VRAS) is modeled by a gamma distribution. We show that underestimating VRAS, which results in underestimates for the evolutionary distances between sequences, usually improves the topological accuracy of phylogenetic tree inference by distance-based methods, especially when the molecular clock holds. We propose a method to estimate the gamma shape parameter value which is most suited for tree topology inference, given the sequences at hand. This method is based on the pairwise evolutionary distances between sequences and allows one to reconstruct the phylogeny of a high number of taxa (>1,000). Simulation results show that the topological accuracy is highly improved when using the gamma shape parameter value given by our method, compared with the true (unknown) value which was used to generate the data. Furthermore, when VRAS is high, the topological accuracy of our distance-based method is better than that of a maximum likelihood approach. Finally, a data set of Maoricicada species sequences is analyzed, which confirms the advantage of our method.  相似文献   

13.
Background: The reconstruction of clonal haplotypes and their evolutionary history in evolving populations is a common problem in both microbial evolutionary biology and cancer biology. The clonal theory of evolution provides a theoretical framework for modeling the evolution of clones.Results: In this paper, we review the theoretical framework and assumptions over which the clonal reconstruction problem is formulated. We formally define the problem and then discuss the complexity and solution space of the problem. Various methods have been proposed to find the phylogeny that best explains the observed data. We categorize these methods based on the type of input data that they use (space-resolved or time-resolved), and also based on their computational formulation as either combinatorial or probabilistic. It is crucial to understand the different types of input data because each provides essential but distinct information for drastically reducing the solution space of the clonal reconstruction problem. Complementary information provided by single cell sequencing or from whole genome sequencing of randomly isolated clones can also improve the accuracy of clonal reconstruction. We briefly review the existing algorithms and their relationships. Finally we summarize the tools that are developed for either directly solving the clonal reconstruction problem or a related computational problem.Conclusions: In this review, we discuss the various formulations of the problem of inferring the clonal evolutionary history from allele frequeny data, review existing algorithms and catergorize them according to their problem formulation and solution approaches. We note that most of the available clonal inference algorithms were developed for elucidating tumor evolution whereas clonal reconstruction for unicellular genomes are less addressed. We conclude the review by discussing more open problems such as the lack of benchmark datasets and comparison of performance between available tools.  相似文献   

14.
With its theoretical basis firmly established in molecular evolutionary and population genetics, the comparative DNA and protein sequence analysis plays a central role in reconstructing the evolutionary histories of species and multigene families, estimating rates of molecular evolution, and inferring the nature and extent of selective forces shaping the evolution of genes and genomes. The scope of these investigations has now expanded greatly owing to the development of high-throughput sequencing techniques and novel statistical and computational methods. These methods require easy-to-use computer programs. One such effort has been to produce Molecular Evolutionary Genetics Analysis (MEGA) software, with its focus on facilitating the exploration and analysis of the DNA and protein sequence variation from an evolutionary perspective. Currently in its third major release, MEGA3 contains facilities for automatic and manual sequence alignment, web-based mining of databases, inference of the phylogenetic trees, estimation of evolutionary distances and testing evolutionary hypotheses. This paper provides an overview of the statistical methods, computational tools, and visual exploration modules for data input and the results obtainable in MEGA.  相似文献   

15.
MOTIVATION: Phylogenies--the evolutionary histories of groups of organisms-play a major role in representing relationships among biological entities. Although many biological processes can be effectively modeled as tree-like relationships, others, such as hybrid speciation and horizontal gene transfer (HGT), result in networks, rather than trees, of relationships. Hybrid speciation is a significant evolutionary mechanism in plants, fish and other groups of species. HGT plays a major role in bacterial genome diversification and is a significant mechanism by which bacteria develop resistance to antibiotics. Maximum parsimony is one of the most commonly used criteria for phylogenetic tree inference. Roughly speaking, inference based on this criterion seeks the tree that minimizes the amount of evolution. In 1990, Jotun Hein proposed using this criterion for inferring the evolution of sequences subject to recombination. Preliminary results on small synthetic datasets. Nakhleh et al. (2005) demonstrated the criterion's application to phylogenetic network reconstruction in general and HGT detection in particular. However, the naive algorithms used by the authors are inapplicable to large datasets due to their demanding computational requirements. Further, no rigorous theoretical analysis of computing the criterion was given, nor was it tested on biological data. RESULTS: In the present work we prove that the problem of scoring the parsimony of a phylogenetic network is NP-hard and provide an improved fixed parameter tractable algorithm for it. Further, we devise efficient heuristics for parsimony-based reconstruction of phylogenetic networks. We test our methods on both synthetic and biological data (rbcL gene in bacteria) and obtain very promising results.  相似文献   

16.
Numerous simulation studies have investigated the accuracy of phylogenetic inference of gene trees under maximum parsimony, maximum likelihood, and Bayesian techniques. The relative accuracy of species tree inference methods under simulation has received less study. The number of analytical techniques available for inferring species trees is increasing rapidly, and in this paper, we compare the performance of several species tree inference techniques at estimating recent species divergences using computer simulation. Simulating gene trees within species trees of different shapes and with varying tree lengths (T) and population sizes (), and evolving sequences on those gene trees, allows us to determine how phylogenetic accuracy changes in relation to different levels of deep coalescence and phylogenetic signal. When the probability of discordance between the gene trees and the species tree is high (i.e., T is small and/or is large), Bayesian species tree inference using the multispecies coalescent (BEST) outperforms other methods. The performance of all methods improves as the total length of the species tree is increased, which reflects the combined benefits of decreasing the probability of discordance between species trees and gene trees and gaining more accurate estimates for gene trees. Decreasing the probability of deep coalescences by reducing also leads to accuracy gains for most methods. Increasing the number of loci from 10 to 100 improves accuracy under difficult demographic scenarios (i.e., coalescent units ≤ 4N(e)), but 10 loci are adequate for estimating the correct species tree in cases where deep coalescence is limited or absent. In general, the correlation between the phylogenetic accuracy and the posterior probability values obtained from BEST is high, although posterior probabilities are overestimated when the prior distribution for is misspecified.  相似文献   

17.
MOTIVATION: Numerous database management systems have been developed for processing various taxonomic data bases on biological classification or phylogenetic information. In this paper, we present an integrated system to deal with interacting classifications and phylogenies concerning particular taxonomic groups. RESULTS: An information-theoretic view (taxon view) has been applied to capture taxonomic concepts as taxonomic data entities. A data model which is suitable for supporting semantically interacting dynamic views of hierarchic classifications and a query method for interacting classifications have been developed. The concept of taxonomic view and the data model can also be expanded to carry phylogenetic information in phylogenetic trees. We have designed a prototype taxonomic database system called HICLAS (HIerarchical CLAssification System) based on the concept of taxon view, and the data models and query methods have been designed and implemented. This system can be effectively used in the taxonomic revisionary process, especially when databases are being constructed by specialists in particular groups, and the system can be used to compare classifications and phylogenetic trees. AVAILABILITY: Freely available at the WWW URL: http://aims.cps.msu.edu/hiclas/ CONTACT: pramanik@cps.msu.edu; lotus@wipm.whcnc.ac.cn  相似文献   

18.
The availability of numerous universal markers and suitable phylogenetic analysis methods are both very important for phylogenomics inference. Based on PCR amplification, a total of 122 markers, which were amplified in 19 representative species, were developed for Laurasiatherian phylogenomics. Subsequently, we illustrated the utility of these newly developed markers using a subset of eight markers. We showed that both 'supermatrix' and 'supertree' trees generated similar topology, which accorded with the current understanding of the Laurasiatherian phylogeny in most aspects. Thus, markers developed here would be likely to make a contribution to resolving evolutionary relationships and inferring evolutionary histories of the Laurasiatherian mammals in the future.  相似文献   

19.
Distance-based reconstruction of tree models for oncogenesis.   总被引:4,自引:0,他引:4  
Comparative genomic hybridization (CGH) is a laboratory method to measure gains and losses in the copy number of chromosomal regions in tumor cells. It is hypothesized that certain DNA gains and losses are related to cancer progression and that the patterns of these changes are relevant to the clinical consequences of the cancer. It is therefore of interest to develop models which predict the occurrence of these events, as well as techniques for learning such models from CGH data. We continue our study of the mathematical foundations for inferring a model of tumor progression from a CGH data set that we started in Desper et al. (1999). In that paper, we proposed a class of probabilistic tree models and showed that an algorithm based on maximum-weight branching in a graph correctly infers the topology of the tree, under plausible assumptions. In this paper, we extend that work in the direction of the so-called distance-based trees, in which events are leaves of the tree, in the style of models common in phylogenetics. Then we show how to reconstruct the distance-based trees using tree-fitting algorithms developed by researchers in phylogenetics. The main advantages of the distance-based models are that 1) they represent information about co-occurrences of all pairs of events, instead of just some pairs, 2) they allow quantitative predictions about which events occur early in tumor progression, and 3) they bring into play the extensive methodology and software developed in the context of phylogenetics. We illustrate the distance-based tree method and how it complements the branching tree method, with a CGH data set for renal cancer.  相似文献   

20.
利用DNA序列构建系统树的方法介绍   总被引:14,自引:0,他引:14  
李涛  赖旭龙  钟扬 《遗传》2004,26(2):205-210
利用DNA序列进行系统发生分析是分子进化研究的必要手段。构建系统树的方法有距离法、简约法、最大似然法以及贝叶斯推断法等。要解决特定的系统发生问题,首先要挑选合理的分类群及序列,尽量减少数据的偏倚,然后选择构树方法,最后还要对结果进行评价并给出进化学上的解释。本文讨论了挑选数据的原则及存在的问题,介绍了几种构树方法的基本原理及步骤,并列举了它们的优缺点。Abstract: Construction of phylogenetic trees is a key means in molecular evolutionary studies. The methods of constructing phylogenetic trees include the distance-based methods, parsimony, maximum likelihood, and Bayesian inference methods. To resolve a special problem about phylogeny, several notices are necessary: first, to select the reasonable data at less bias as possible; second, to choose the proper method to reconstruct phylogenetic tree; third, to evaluate the conclusions and explain them on the field of evolution. The present paper provides a brief introduction of the principles of data selection and tree-construction methods, and discusses about their advantage and disadvantage points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号