首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apidaecins refer to a series of proline-rich, 18- to 20-residue antimicrobial peptides produced by insects. Accumulating evidence that proline-rich antimicrobial peptides are not-toxic to human and animal cells makes them potential candidates for the development of novel antibiotic drugs. However, the mechanism of action was not fully understood. In this study, antibacterial mechanism of apidaecins was investigated. iTRAQ-coupled 2-D LC-MS/MS technique was utilized to identify altered cytoplasmic proteins of Escherichia coli incubated with one isoform of apidaecins--apidaecin IB. The production of the chaperonin GroEL and its cofactor GroES, which together form the only essential chaperone system in E. coli cytoplasm under all growth conditions, was decreased in cells incubated with apidaecin IB. The decreasing of the GroEL-GroES chaperone team was further found to be involved in a new antibacterial mechanism of apidaecins. Our findings therefore provide important new insights into the antibacterial mechanism of apidaecins and perhaps, by extension, for other proline-rich antimicrobial peptides.  相似文献   

2.
Xu J  Khor KA  Sui J  Zhang J  Tan TL  Chen WN 《Proteomics》2008,8(20):4249-4258
Hydroxyapatite (HA) and its derived bioceramic materials have been widely used for skeletal implants and/or bone repair scaffolds. It has been reported that carbon nanotube (CNT) is able to enhance the brittle ceramic matrix without detrimental to the bioactivity. However, interaction between osteoblasts and these bioceramics, as well as the underlying mechanism of osteoblast proliferation on these bioceramic surfaces remain to be determined. Using iTRAQ-coupled 2-D LC-MS/MS analysis, we report the first comparative proteomics profiling of human osteoblast cells cultured on plane HA and CNT reinforced HA, respectively. Cytoskeletal proteins, metabolic enzymes, signaling, and cell growth proteins previous associated with cell adhesion and proliferation were found to be differentially expressed on these two surfaces. The level of these proteins was generally higher in cells adhered to HA surface, indicating a higher level of cellular proliferation in these cells. The significance of these findings was further assessed by Western blot analysis. The differential protein profile in HA and CNT strengthened HA established in our study should be valuable for future design of biocompatible ceramics.  相似文献   

3.
Zhang J  Sui J  Ching CB  Chen WN 《Proteomics》2008,8(8):1595-1607
Ibuprofen is a member of the proprionic acid group of nonsteroidal anti-inflammatory drugs (NSAID), with the S-enantiomer being more active than the R-enantiomer. It has been shown to display protective effects against neuroinflammation, which is linked to the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease (AD). While its prophylactic effect on AD has been suggested, a comprehensive understanding of its mechanism of action remains unclear. Using iTRAQ-coupled 2-D LC-MS/MS analysis, we report here the first study of protein profiles of neuroblastoma cells incubated separately with the two enantiomers of ibuprofen. Three types of cellular proteins, including metabolic enzymes, signaling molecules and cytoskeletal proteins, displayed changes. The changes in the level of a number of enzymes involved in fatty acid synthesis and antioxidant activity in cells incubated with the S-enantiomer were further supported by the real-time PCR analysis as well as the reduced level of reactive oxygen species in cells incubated with the S-enantiomer of ibuprofen. Our findings, therefore, provide the possible mechanism of ibuprofen-induced proteins on AD, and the beneficial effects of ibuprofen in reducing the development of AD.  相似文献   

4.
Zhang N  Chen R  Young N  Wishart D  Winter P  Weiner JH  Li L 《Proteomics》2007,7(4):484-493
Both organic solvent and surfactant have been used for dissolving membrane proteins for shotgun proteomics. In this work, two methods of protein solubilization, namely using 60% methanol or 1% SDS, to dissolve and analyze the inner membrane fraction of an Escherichia coli K12 cell lysate were compared. A total of 358 proteins (1417 unique peptides) from the methanol-solubilized protein mixture and 299 proteins (892 peptides) from the SDS-solubilized sample-were identified by using trypsin digestion and 2-D LC-ESI MS/MS. It was found that the methanol method detected more hydrophobic peptides, resulting in a greater number of proteins identified, than the SDS method. We found that 159 out of 358 proteins (44%) and 120 out of 299 proteins (40%) detected from the methanol- and SDS-solubilized samples, respectively, are integral membrane proteins. Among the 190 integral membrane proteins 70 were identified exclusively in the methanol-solubilized sample, 89 were identified by both methods, and only 31 proteins were exclusively identified by the SDS method. It is shown that the integral membrane proteins reflected the theoretical proteome for number of transmembrane helices, length, functional class, and topology, indicating there was no bias in the proteins identified.  相似文献   

5.
The x protein of HBV (HBx) has been involved in the development of hepatocellular carcinoma (HCC), with a possible link to individual genotypes. Nevertheless, the underlying mechanism remains obscure. In this study, we aim to identify the HBx-induced protein profile in HepG2 cells by LC-MS/MS proteomics analysis. Our results indicated that proteins were differentially expressed in HepG2 cells transfected by HBx of various genotypes. Proteins associated with cytoskeleton were found to be either up-regulated (MACF1, HMGB1, Annexin A2) or down-regulated (Lamin A/C). These may in turn result in the decrease of focal adhesion and increase of cell migration in response to HBx. Levels of other cellular proteins with reported impact on the function of extracellular matrix (ECM) proteins and cell migration, including Ca2+-binding proteins (S100A11, S100A6, and S100A4) and proteasome protein (PSMA3), were affected by HBx. The differential protein profile identified in this study was also supported by our functional assay which indicated that cell migration was enhanced by HBx. Our preliminary study provided a new platform to establish a comprehensive cellular protein profile by LC-MS/MS proteomics analysis. Further downstream functional assays, including our reported cell migration assay, should provide new insights in the association between HCC and HBx.  相似文献   

6.
Atenolol is a beta(1)-selective drug, which exerts greater blocking activity on beta(1)-adrenoreceptors than on beta(2)-adrenoreceptors, with the S-enantiomer being more active than R-enantiomer. The aim of this study was to investigate the proteins with differential protein expression levels in the proteome of vascular smooth muscle cells (A7r5) incubated separately with individual enantiomers of atenolol using an iTRAQ-coupled two-dimensional LC-MS/MS approach. Our results indicated that some calcium-binding proteins such as calmodulin, protein S100-A11, protein S100-A4, and annexin A6 were down-regulated and showed relatively lower protein levels in cells incubated with the S-enantiomer of atenolol than those incubated with the R-enantiomer, whereas metabolic enzymes such as aspartate aminotransferase, glutathione S-transferase P, NADH-cytochrome b(5) reductase, and alpha-N-acetylgalactosaminidase precursor were up-regulated and displayed higher protein levels in cells incubated with the S-enantiomer relative to those incubated with the R-enantiomer. The involvement of NADH-cytochrome b(5) reductase in the intracellular anabolic activity was validated by NAD+/NADH assay with a higher ratio of NAD+/NADH correlating with a higher proportion of NAD+. The down-regulation of the calcium-binding proteins was possibly involved in the lower intracellular Ca2+ concentration in A7r5 cells incubated with the S-enantiomer of atenolol. Ca2+ signals transduced by calcium-binding proteins acted on cytoskeletal proteins such as nestin and beta-tropomyosin, which can play a complex role in phenotypic modulation and regulation of the cytoskeletal modeling. Our preliminary results thus provide molecular evidence on the metabolic effect and possible link of calcium-binding proteins with treatment of hypertension associated with atenolol.  相似文献   

7.
Propranolol is a nonselective beta-blocker of the beta-adrenergic receptors, and the S-enantiomer is more active compared with the R-enantiomer. Clinically, it has been shown to be effective in hypermetabolic burn patients by decreasing cardiac work, protein catabolism, and lipolysis. While gene expression profiles have recently been reported in children receiving propranolol treatment, variations from one individual to another may have influenced the data analysis. Using iTRAQ-coupled 2D LC-MS/MS analysis, we report here the first study of protein profile in vascular smooth muscle cells incubated separately with the two enantiomers of propranolol. Four types of cellular proteins including metabolic enzymes, signaling molecules, cytoskeletal proteins, and those involved in DNA synthesis/protein translation displayed changes. The higher protein level of a number of enzymes involved in cellular anabolism and antioxidant activity in cells incubated with the S-enantiomer, as revealed by LC-MS/MS, was further supported by real-time PCR and Western blot analyses. Significantly, the increase in the anabolic activity associated with the higher level of metabolic enzymes was also supported by the higher intracellular concentration of the metabolic cofactor NAD+ which was a result of an increased oxidation of NADH. Our findings therefore provide molecular evidence on metabolic effect associated with propranolol treatment. The metabolic enzymes identified in our study may in turn be useful targets for future pharmaceutical interventions to reduce clinical side effects following propranolol treatment.  相似文献   

8.
Adipose tissue is critical in obesity and type II diabetes. Blocking of adipocyte differentiation is one of the anti-obesity strategies targeting on strong rise in fat storage and secretion of adipokine(s). However, the molecular basis of adipocyte differentiation and its regulation remains obscure. Therefore, we exposed 3T3-L1 cell line to appropriate hormonal inducers as adipocyte differentiation model. Using iTRAQ-coupled 2D LC-MS/MS, a successfully exploited high-throughput proteomic technology, we nearly quantitated 1,000 protein species and found 106 significantly altered proteins during adipocyte differentiation. The great majority of differentially expressed proteins were related to metabolism enzymes, structural molecules, and proteins involved in signal transduction. In addition to previously reported differentially expressed molecules, more than 20 altered proteins previously unknown to be involved with adipogenic process were firstly revealed (e.g., HEXB, DPP7, PTTG1IP, PRDX5, EPDR1, SPNB2, STEAP3, TPP1, etc.). The partially differential proteins were verified by Western blot and/or real-time PCR analysis. Furthermore, the association of PCX and VDAC2, two altered proteins, with adipocyte conversion was analyzed using siRNA method, and the results showed that they could contribute considerably to adipogenesis. In conclusion, our data provide valuable information for further understanding of adipogenesis.  相似文献   

9.
The cell envelope of Escherichia coli is an essential structure that modulates exchanges between the cell and the extra-cellular milieu. Previous proteomic analyses have suggested that it contains a significant number of proteins with no annotated function. To gain insight into these proteins and the general organization of the cell envelope proteome, we have carried out a systematic analysis of native membrane protein complexes. We have identified 30 membrane protein complexes (6 of which are novel) and present reference maps that can be used for cell envelope profiling. In one instance, we identified a protein with no annotated function (YfgM) in a complex with a well-characterized periplasmic chaperone (PpiD). Using the guilt by association principle, we suggest that YfgM is also part of the periplasmic chaperone network. The approach we present circumvents the need for engineering of tags and protein overexpression. It is applicable for the analysis of membrane protein complexes in any organism and will be particularly useful for less-characterized organisms where conventional strategies that require protein engineering (i.e., 2-hybrid based approaches and TAP-tagging) are not feasible.  相似文献   

10.
Within the Human Proteome Organization (HUPO) Brain Proteome Project, a pilot study was launched with reference samples shipped to nine international laboratories (see Hamacher et al., this Special Issue) to evaluate different proteome approaches in neuroscience and to build up a first version of a brain protein database. One part of the study addresses quantitative proteome alterations between three developmental stages (embryonic day 16; postnatal day 7; 8 weeks) of mouse brains. Five brains per stage were differentially analyzed by 2-D DIGE using internal standardization and overlapping pH gradients (pH 4-7 and 6-9). In total, 214 protein spots showing stage-dependent intensity alterations (> two-fold) were detected, 56 of which were identified. Several of them, e.g. members of the dihydropyrimidinase family, are known to be associated with brain development. To feed the HUPO BPP brain protein database, a robust 2-D LC-MS/MS method was applied to murine postnatal day 7 and human post-mortem brain samples. Using MASCOT and the IPI database, 350 human and 481 mouse proteins could be identified by at least two different peptides. The data are accessible through the PRIDE database (http://www.ebi.ac.uk/pride/).  相似文献   

11.
Aims: This paper utilized quantitative LC‐MS/MS to profile the short‐chain acyl‐CoA levels of several strains of Escherichia coli engineered for heterologous polyketide production. To further compare and potentially expand the levels of available acyl‐CoA molecules, a propionyl‐CoA synthetase gene from Ralstonia solanacearum (prpERS) was synthesized and expressed in the engineered strain BAP1. Methods and Results: Upon feeding propionate, the engineered E. coli strains had increased the levels of both propionyl‐ and methylmalonyl‐CoA of 6‐ to 30‐fold and 3·7‐ to 6·8‐fold, respectively. Expression of prpE‐RS resulted in no significant increases in acetyl‐, butyryl‐ and propionyl‐CoA when fed the corresponding substrates (sodium acetate, butyrate or propionate). More interesting, however, were the results from strain BAP1 engineered for native prpE overexpression, which indicated increases in the same range of acyl‐CoA formation. Conclusions: The increased acyl‐CoA levels across the strains profiled in this study reflect the genetic modifications implemented for improved polyketide production and also indicate flexibility of the native PrpE. Significance and Impact of the Study: The results provide direct evidence of enhanced acyl‐CoA levels correlating to those strains engineered for polyketide biosynthesis. This information and the inherent flexibility of the native PrpE enzyme support future efforts to characterize, engineer and extend acyl‐CoA precursor supply for additional heterologous biosynthetic attempts.  相似文献   

12.
The study of changes in protein levels between samples derived from cells representing different biological conditions is a key to the understanding of cellular function. There are two main methods available that allow both for global scanning for significantly varying proteins and targeted profiling of proteins of interest. One method is based on 2-D gel electrophoresis and image analysis of labelled proteins. The other method is based on LC-MS/MS analysis of either unlabelled peptides or peptides derived from isotopically labelled proteins or peptides. In this study, the non-labelling approach was used involving a new software, DeCyder MS Differential Analysis Software (DeCyder MS) intended for automated detection and relative quantitation of unlabelled peptides in LC-MS/MS data.Total protein extracts of E. coli strains expressing varying levels of dihydrofolate reductase and integron integrase were digested with trypsin and analyzed using a nanoscale liquid chromatography system, Ettan MDLC, online connected to an LTQTM linear ion-trap mass spectrometer fitted with a nanospray interface. Acquired MS data were subjected to DeCyder MS analysis where 2-D representations of the peptide patterns from individual LC-MS/MS analyses were matched and compared.This approach to unlabelled quantitative analysis of the E. coli proteome resulted in relative protein abundances that were in good agreement with results obtained from traditional methods for measuring protein levels.  相似文献   

13.
Specific localization of the lysis (L) protein of bacteriophage MS2 in the cell wall of Escherichia coli was determined by immunoelectron microscopy. After induction of the cloned lysis gene, the cells were plasmolyzed, fixed, and embedded in either Epon or Lowicryl K4M. Polyclonal L-protein-specific antiserum was purified by preabsorption to membranes from cells harboring a control plasmid. Protein A-gold was used to label the protein-antibody complexes. Between 42.8% (Lowicryl) and 33.8% (Epon) of the label was found in inner and outer membranes, but 30.3% (Lowicryl) and 32.8% (Epon) was present mostly in clusters in the adhesion sites visible after plasmolysis. The remaining label (26.9 and 33.4%, respectively) appeared to be present in the periplasmic space but may also have been part of membrane junctions not visible because of poor contrast of the specimen. In contrast, a quite different distribution of the L protein was found in cells grown under conditions of penicillin tolerance, i.e., at pH 5, a condition that had previously been shown to protect cells from L-protein-induced lysis. At tolerant conditions, only 21.0% of the L protein was in the adhesion sites; most of the protein (68.2%) was found in inner and outer membranes. It is concluded that lysis of the host, E. coli, was a result of the formation of specific L-protein-mediated membrane adhesion sites.  相似文献   

14.
Guo Y  Ma SF  Grigoryev D  Van Eyk J  Garcia JG 《Proteomics》2005,5(17):4608-4624
Bronchoalveolar lavage fluid (BALF) is a complex mixture of proteins, which represents a unique clinically useful sampling of the lower respiratory tract. Many proteomic technologies can be used to characterize complex biological mixtures; however, it is not yet clear which technology(s) provide more information regarding the number of proteins identified and sequence coverage. In this study, we initially compared two common proteomic approaches, 2-D LC microESI MS/MS and 1-DE followed by gel slice digestion, peptide extraction and peptide identification by MS in characterization of the mouse BALF proteome; secondly, we identified 297 unique proteins from the mouse BALF proteome, greatly expanded the BALF proteome by about threefold regardless of species.  相似文献   

15.
16.
Membrane proteins play a fundamental role in human disease and therapy, but suffer from a lack of structural and functional information compared to their soluble counterparts. The paucity of membrane protein structures is primarily due to the unparalleled difficulties in obtaining detergent-solubilized membrane proteins at sufficient levels and quality. We have developed an in vitro evolution strategy for optimizing the levels of detergent-solubilized membrane protein that can be overexpressed and purified from recombinant Escherichia coli. Libraries of random mutants for nine membrane proteins were screened for expression using a novel implementation of the colony filtration blot. In only one cycle of directed evolution were significant improvements of membrane protein yield obtained for five out of nine proteins. In one case, the yield of detergent-solubilized membrane protein was increased 40-fold.  相似文献   

17.
Genomic SELEX is a method for studying the network of nucleic acid–protein interactions within any organism. Here we report the discovery of several interesting and potentially biologically important interactions using genomic SELEX. We have found that bacteriophage MS2 coat protein binds several Escherichia coli mRNA fragments more tightly than it binds the natural, well-studied, phage mRNA site. MS2 coat protein binds mRNA fragments from rffG (involved in formation of lipopolysaccharide in the bacterial outer membrane), ebgR (lactose utilization repressor), as well as from several other genes. Genomic SELEX may yield experimentally induced artifacts, such as molecules in which the fixed sequences participate in binding. We describe several methods (annealing of oligonucleotides complementary to fixed sequences or switching fixed sequences) to eliminate some, or almost all, of these artifacts. Such methods may be useful tools for both randomized sequence SELEX and genomic SELEX.  相似文献   

18.
《Journal of Proteomics》2010,73(1):112-122
Proteomic profiling of membrane proteins is of vital importance in the search for disease biomarkers and drug development. However, the slow pace in this field has resulted mainly from the difficulty to analyze membrane proteins by mass spectrometry (MS). The objective of this investigation was to explore and optimize solubilization of membrane proteins for shotgun membrane proteomics of the CD14 human monocytes by examining different systems that rely on: i) an organic solvent (methanol) ii) an acid-labile detergent 3-[3-(1,1-bisalkyloxyethyl)pyridin-1-yl]propane-1-sulfonate (PPS), iii) a combination of both agents (methanol + PPS). Solubilization efficiency of different buffers was first compared using bacteriorhodopsin as a model membrane protein. Selected approaches were then applied on a membrane subproteome isolated from a highly enriched human monocyte population that was ~ 98% positive for CD14 expression as determined by FACS analysis. A methanol-based buffer yielded 194 proteins of which 93 (48%) were mapped as integral membrane proteins. The combination of methanol and acid-cleavable detergent gave similar results; 203 identified proteins of which 93 (46%) were mapped integral membrane proteins. However, employing PPS 216 proteins were identified of which 75 (35%) were mapped as integral membrane proteins. These results indicate that methanol alone or in combination with PPS yielded significantly higher membrane protein identification/enrichment than the PPS alone.  相似文献   

19.
Proteomic profiling of membrane proteins is of vital importance in the search for disease biomarkers and drug development. However, the slow pace in this field has resulted mainly from the difficulty to analyze membrane proteins by mass spectrometry (MS). The objective of this investigation was to explore and optimize solubilization of membrane proteins for shotgun membrane proteomics of the CD14 human monocytes by examining different systems that rely on: i) an organic solvent (methanol) ii) an acid-labile detergent 3-[3-(1,1-bisalkyloxyethyl)pyridin-1-yl]propane-1-sulfonate (PPS), iii) a combination of both agents (methanol + PPS). Solubilization efficiency of different buffers was first compared using bacteriorhodopsin as a model membrane protein. Selected approaches were then applied on a membrane subproteome isolated from a highly enriched human monocyte population that was ~ 98% positive for CD14 expression as determined by FACS analysis. A methanol-based buffer yielded 194 proteins of which 93 (48%) were mapped as integral membrane proteins. The combination of methanol and acid-cleavable detergent gave similar results; 203 identified proteins of which 93 (46%) were mapped integral membrane proteins. However, employing PPS 216 proteins were identified of which 75 (35%) were mapped as integral membrane proteins. These results indicate that methanol alone or in combination with PPS yielded significantly higher membrane protein identification/enrichment than the PPS alone.  相似文献   

20.
Consequences of membrane protein overexpression in Escherichia coli   总被引:1,自引:0,他引:1  
Overexpression of membrane proteins is often essential for structural and functional studies, but yields are frequently too low. An understanding of the physiological response to overexpression is needed to improve such yields. Therefore, we analyzed the consequences of overexpression of three different membrane proteins (YidC, YedZ, and LepI) fused to green fluorescent protein (GFP) in the bacterium Escherichia coli and compared this with overexpression of a soluble protein, GST-GFP. Proteomes of total lysates, purified aggregates, and cytoplasmic membranes were analyzed by one- and two-dimensional gel electrophoresis and mass spectrometry complemented with flow cytometry, microscopy, Western blotting, and pulse labeling experiments. Composition and accumulation levels of protein complexes in the cytoplasmic membrane were analyzed with improved two-dimensional blue native PAGE. Overexpression of the three membrane proteins, but not soluble GST-GFP, resulted in accumulation of cytoplasmic aggregates containing the overexpressed proteins, chaperones (DnaK/J and GroEL/S), and soluble proteases (HslUV and ClpXP) as well as many precursors of periplasmic and outer membrane proteins. This was consistent with lowered accumulation levels of secreted proteins in the three membrane protein overexpressors and is likely to be a direct consequence of saturation of the cytoplasmic membrane protein translocation machinery. Importantly accumulation levels of respiratory chain complexes in the cytoplasmic membrane were strongly reduced. Induction of the acetate-phosphotransacetylase pathway for ATP production and a down-regulated tricarboxylic acid cycle indicated the activation of the Arc two-component system, which mediates adaptive responses to changing respiratory states. This study provides a basis for designing rational strategies to improve yields of membrane protein overexpression in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号