首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A point mutation in the Drosophila gene that codes for the major adult isoform of adenine nuclear translocase (ANT) represents a model for human diseases that are associated with ANT insufficiency [stress-sensitive B1 (sesB1)]. We characterized the organismal, bioenergetic and molecular phenotype of sesB1 flies then tested strategies to compensate the mutant phenotype. In addition to developmental delay and mechanical-stress-induced seizures, sesB1 flies have an impaired response to sound, defective male courtship, female sterility and curtailed lifespan. These phenotypes, excluding the latter two, are shared with the mitoribosomal protein S12 mutant, tko25t. Mitochondria from sesB1 adults showed a decreased respiratory control ratio and downregulation of cytochrome oxidase. sesB1 adults exhibited ATP depletion, lactate accumulation and changes in gene expression that were consistent with a metabolic shift towards glycolysis, characterized by activation of lactate dehydrogenase and anaplerotic pathways. Females also showed downregulation of many genes that are required for oogenesis, and their eggs, although fertilized, failed to develop to the larval stages. The sesB1 phenotypes of developmental delay and mechanical-stress-induced seizures were alleviated by an altered mitochondrial DNA background. Female sterility was substantially rescued by somatic expression of alternative oxidase (AOX) from the sea squirt Ciona intestinalis, whereas AOX did not alleviate developmental delay. Our findings illustrate the potential of different therapeutic strategies for ANT-linked diseases, based on alleviating metabolic stress.KEY WORDS: Adenine nucleotide translocase, Mitochondrial disease, Mitochondrial biogenesis, Alternative oxidase  相似文献   

2.
Angelman syndrome (AS), a genetic disorder occurring in approximately one in every 15,000 births, is characterized by severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene, although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II (CaMKII) regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes. Specifically, there is an increased αCaMKII phosphorylation at the autophosphorylation sites Thr(286) and Thr(305/306), resulting in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV) vector to increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS patients.  相似文献   

3.
Molecular chaperones protect cells from the deleterious effects of protein misfolding and aggregation. Neurotoxicity of amyloid-beta (Aβ) aggregates and their deposition in senile plaques are hallmarks of Alzheimer''s disease (AD). We observed that the overall content of αB-crystallin, a small heat shock protein molecular chaperone, decreased in AD model mice in an age-dependent manner. We hypothesized that αB-crystallin protects cells against Aβ toxicity. To test this, we crossed αB-crystallin/HspB2 deficient (CRYAB-/-HSPB2-/-) mice with AD model transgenic mice expressing mutant human amyloid precursor protein. Transgenic and non-transgenic mice in chaperone-sufficient or deficient backgrounds were examined for representative behavioral paradigms for locomotion and memory network functions: (i) spatial orientation and locomotion was monitored by open field test; (ii) sequential organization and associative learning was monitored by fear conditioning; and (iii) evoked behavioral response was tested by hot plate method. Interestingly, αB-crystallin/HspB2 deficient transgenic mice were severely impaired in locomotion compared to each genetic model separately. Our results highlight a synergistic effect of combining chaperone deficiency in a transgenic mouse model for AD underscoring an important role for chaperones in protein misfolding diseases.  相似文献   

4.
5.
线粒体缺陷与阿尔采末病   总被引:10,自引:0,他引:10  
Zhang L  Li L 《生理科学进展》1999,30(4):363-366
阿尔采末病(Alzheimer’s disease,AD)存在线粒体氧化磷酸化异常与线粒体DNA(mtDNA)缺陷,主要表现为;线粒体呼吸链复合体Ⅳ(细胞以素c氧化酶,COX)活性在AD患者血小板,培养的皮肤成纤维细胞及脑中显著下降。其可能则遗传性mtDNA突变与自由基介导的体细胞mtDNA突变的共同作用,也可能继发于其它改变。  相似文献   

6.
The possibility of detecting progressive changes in cognitive function reflecting the spatio-temporal pattern of beta-amyloid peptide (Abeta) deposition was investigated in Tg2576 mice overexpressing the human mutant amyloid precursor protein (hAPP). Here, we show that at 7 months of age, Tg2576 mice exhibited a selective deficit in hippocampus-based operations including a defective habituation of object exploration, a lack of reactivity to spatial novelty and a disruption of allothetic orientation in a cross-shaped maze. At 14 months of age, Tg2576 mice displayed a more extended pattern of behavioral abnormalities, because they failed to react to object novelty and exclusively relied on motor-based orientation in the cross-shaped maze. However, an impaired reactivity to spatial and object novelty possibly reflecting age-related attention deficits also emerged in aged wild-type mice. These findings further underline that early cognitive markers of AD can be detected in Tg2576 mice before Abeta deposition occurs and suggest that as in humans, cognitive deterioration progressively evolves from an initial hippocampal syndrome to global dementia because of the combined effect of the neuropathology and aging.  相似文献   

7.
8.
Amyloid-β peptide (Aβ), which is generated by the β- and γ-secretase-mediated proteolysis of β-amyloid precursor protein (APP), plays an important role in the pathogenesis of Alzheimer's disease (AD). We recently reported that prostaglandin E(2) (PGE(2) ) stimulates the production of Aβ through both EP(2) and EP(4) receptors and that activation of the EP(4) receptor stimulates Aβ production through endocytosis and activation of γ-secretase. We here found that transgenic mice expressing mutant APP (APP23) mice showed a greater or lesser apparent cognitive deficit when they were crossed with mice lacking EP(2) or EP(4) receptors, respectively. Mice lacking the EP(4) receptor also displayed lower levels of Aβ plaque deposition and less neuronal and synaptic loss than control mice. Oral administration of a specific EP(4) receptor antagonist, AE3-208 to APP23 mice, improved their cognitive performance, as well as decreasing brain levels of Aβ and suppressing endocytosis and activation of γ-secretase. Taken together, these results suggest that inhibition of the EP(4) receptor improves the cognitive function of APP23 mice by suppressing Aβ production and reducing neuronal and synaptic loss. We therefore propose that EP(4) receptor antagonists, such as AE3-208, could be therapeutically beneficial for the prevention and treatment of AD.  相似文献   

9.
We describe a genetic transformation system which should prove useful for investigating tropomyosin assembly and function. Muscle abnormalities associated with a defective tropomyosin allele were corrected by integrating the wild-type gene into germ line chromosomes. The transformation protocol permits application of directed mutagenesis techniques in investigations of contractile regulatory mechanisms.  相似文献   

10.
ABSTRACT: The success of biomedical researches has led to improvement in human health and increased life expectancy. An unexpected consequence has been an increase of age-related diseases and, in particular, neurodegenerative diseases. These disorders are generally late onset and exhibit complex pathologies including memory loss, cognitive defects, movement disorders and death. Here, it is described as the use of simple animal models such as worms, fishes, flies, Ascidians and sea urchins, have facilitated the understanding of several biochemical mechanisms underlying Alzheimer's disease (AD), one of the most diffuse neurodegenerative pathologies. The discovery of specific genes and proteins associated with AD, and the development of new technologies for the production of transgenic animals, has helped researchers to overcome the lack of natural models. Moreover, simple model systems of AD have been utilized to obtain key information for evaluating potential therapeutic interventions and for testing efficacy of putative neuroprotective compounds.  相似文献   

11.
Fragile X syndrome is a leading heritable cause of mental retardation that results from the loss of FMR1 gene function. A Drosophila model for Fragile X syndrome, based on the loss of dfmr1 activity, exhibits phenotypes that bear similarity to Fragile X-related symptoms. Herein, we demonstrate that treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium can rescue courtship and mushroom body defects observed in these flies. Furthermore, we demonstrate that dfmr1 mutants display cognitive deficits in experience-dependent modification of courtship behavior, and treatment with mGluR antagonists or lithium restores these memory defects. These findings implicate enhanced mGluR signaling as the underlying cause of the cognitive, as well as some of the behavioral and neuronal, phenotypes observed in the Drosophila Fragile X model. They also raise the possibility that compounds having similar effects on metabotropic glutamate receptors may ameliorate cognitive and behavioral defects observed in Fragile X patients.  相似文献   

12.
13.
14.
Dopamine (DA) is a neurotransmitter with conserved behavioral roles between invertebrate and vertebrate animals. In addition to its neural functions, in insects DA is a critical substrate for cuticle pigmentation and hardening. Drosophila tyrosine hydroxylase (DTH) is the rate limiting enzyme for DA biosynthesis. Viable brain DA‐deficient flies were previously generated using tissue‐selective GAL4‐UAS binary expression rescue of a DTH null mutation and these flies show specific behavioral impairments. To circumvent the limitations of rescue via binary expression, here we achieve rescue utilizing genomically integrated mutant DTH. As expected, our DA‐deficient flies have no detectable DTH or DA in the brain, and show reduced locomotor activity. This deficit can be rescued by l ‐DOPA/carbidopa feeding, similar to human Parkinson's disease treatment. Genetic rescue via GAL4/UAS‐DTH was also successful, although this required the generation of a new UAS‐DTH1 transgene devoid of most untranslated regions, as existing UAS‐DTH transgenes express in the brain without a Gal4 driver via endogenous regulatory elements. A surprising finding of our newly constructed UAS‐DTH1m is that it expresses DTH at an undetectable level when regulated by dopaminergic GAL4 drivers even when fully rescuing DA, indicating that DTH immunostaining is not necessarily a valid marker for DA expression. This finding necessitated optimizing DA immunohistochemistry, showing details of DA innervation to the mushroom body and the central complex. When DA rescue is limited to specific DA neurons, DA does not diffuse beyond the DTH‐expressing terminals, such that DA signaling can be limited to very specific brain regions.  相似文献   

15.
The concept of mild cognitive impairment (MCI) identifies persons who are neither cognitively normal nor demented. There is increasing evidence that MCI defines a group of persons who are at near-term risk of developing dementia and particularly Alzheimer''s disease (AD). MCI thus constitutes an attractive target population for preventive treatments of AD. MCI is associated with aging and is more prevalent than dementia. There are several clinical and biological markers that are predictive of MCI prognosis, including depressive symptoms, cognitive deficits, brain imaging and neurochemical findings. The clinician needs to be especially alert to depressive and other mood symptoms which are common in MCI and potentially treatable. Trials of current medications for prevention of MCI progression to dementia have been largely negative. There are observational data suggesting that lifestyle modifications including exercise, leisure activities, cognitive stimulation, and social activities may be effective for prevention of MCI progression. There are many novel therapies currently in trials for early AD, and if effective they may prove to be helpful in prevention of MCI progression as well.  相似文献   

16.
BackgroundAlzheimer's disease (AD) is currently incurable and there is an urgent need to develop new AD drugs. Many studies have revealed the potential neuroprotective effect of Epigallocatechin-3-O-gallate (EGCG), the main antioxidant in green tea, on animal models of AD. However, a systematic review of these reports is lacking.PurposeTo assess the effectiveness of EGCG for AD treatment using systematic review and meta-analysis of pre-clinical trials.MethodsWe conducted a systematic search of all available randomized controlled trials (RCTs) performed up to November 2019 in the following electronic databases: ScienceDirect, Web of Science, and PubMed. 17 preclinical studies assessing the effect of EGCG on animal AD models have been identified. Meta-analysis and subgroup analysis was performed to evaluate cognition improvement of various types of AD models. The study quality was assessed using the CAMARADES checklist and the criteria of published studies.ResultsOur analysis shows that the methodological quality ranges from 3 to 5, with a median score of 4. According to meta-analysis of random-effects method, EGCG showed a positive effect in AD with shorter escape latency (SMD= -9.24, 95%CI= -12.05 to -6.42) and decreased Aβ42 level (SD= -25.74,95%CI= -42.36 to -9.11). Regulation of α-, β-, γ-secretase activity, inhibition of tau phosphorylation, anti-oxidation, anti-inflammation, anti-apoptosis, and inhibition of AchE activity are reported as the main neuroprotective mechanisms. Though more than 100 clinical trials have been registered on the ClinicalTrials.gov, only one clinical trial has been conducted to test the therapeutic effects of EGCG on the AD progression and cognitive performance.ConclusionHere, we conducted this review to systematically describe the therapeutic potential of EGCG in animal models of AD and hope to provide a more comprehensive assessment of the effects in order to design future clinical trials. Besides, the safety, blood-brain barrier (BBB) penetration and bioavailability issues in conducting clinical trials were also discussed.  相似文献   

17.
While the pathogenesis of the sporadic form of Alzheimer disease (late onset Alzheimer disease, LOAD) is not fully understood, it seems to be clear that a combination of genetic and environmental factors are involved and influence the course of the disease. Among these factors, elevated levels of oxidative stress have been recognized and individual differences in the capacity to deal with DNA damage caused by its effects have been the subject of numerous studies. This review summarizes the research on DNA repair proteins and genes in the context of LOAD pathogenesis and its possible prodromal stage, mild cognitive impairment (MCI). The current status of the research in this field is discussed with respect to methodological issues which might have compromised the outcome of some studies and future directions of investigation on this subject are depicted.  相似文献   

18.
Network models combined with gene expression studies have become useful tools for studying complex diseases like Alzheimer's disease. We constructed a "Core" Alzheimer's disease protein interaction network by human curation of the primary literature. The Core network consisted of 775 nodes and 2,204 interactions. To our knowledge, this is the most comprehensive and accurate protein interaction network yet constructed for Alzheimer's disease. An "Expanded" network was computationally constructed by adding additional proteins that interacted with Core network proteins, and consisted of 4,945 nodes and 26,064 interactions. We then mapped existing gene expression studies to the Core network. This combined data model identified the MAPK/ERK pathway and clathrin-mediated receptor endocytosis as key pathways in Alzheimer's disease. Important proteins in the MAPK/ERK pathway that interacted in the Core network formed a downregulated cluster of nodes, whereas clathrin and several clathrin accessory proteins that interacted in the Core network formed an upregulated cluster of nodes. The MAPK/ERK pathway is a key component in synaptic plasticity and learning, processes disrupted in Alzheimer's. Clathrin and clathrin adaptor proteins are involved in the endocytosis of the APP protein that can lead to increased intracellular levels of amyloid beta peptide, contributing to the progression of Alzheimer's.  相似文献   

19.
Rogaev EI 《Genetika》1999,35(11):1558-1571
Genetic factors are responsible, to a certain degree, for many, if not all, Alzheimer's disease (AD) cases. A certain proportion of early-onset (below 65 years of age) AD cases follows an autosomal dominant mode of inheritance. Three genes were identified whose mutations account for 50-70% of early-onset monogenic AD cases in AD pedigrees. These are the genes of the amyloid precursor protein (APP) and two presenilins (PS I and PS II). The polymorphic variant of apolipoprotein E, APOE epsilon 4, is a genetic causative factor in familial and sporadic cases of various early- and late-onset AD forms (it is found, in general, in 20-50% of all AD cases). The action of the epsilon 4 allele is codominant, with the AD risk increased in homozygotes (epsilon 4/epsilon 4 > epsilon 4 > epsilon 3 or epsilon 2). In contrast to the mutations in the PS I and APP genes, the APOE epsilon 4 allele is not a necessary and sufficient condition for AD development. Mutations in these genes have not been found in a proportion of familial early-onset AD cases and are not causative factors in the majority of late-onset familial and sporadic forms. The genes determining AD are evolutionarily conservative and are expressed in all human tissues as early as at initial ontogenetic stages. This raises the question as to why AD is a progressive disorder affecting certain cerebral regions only at middle or old age. A hypothesis and model are suggested to explain the interaction between evolutionary, ontogenetic, and epigenetic factors of the development of the central nervous system and the products of genes whose mutations result in AD. Findings of different mutant genes indicate that AD is a set of genetic disorders (ADs) with a common pathological manifestation.  相似文献   

20.
Although insulin resistance increases the risk of Alzheimer's disease (AD), the mechanisms remain unclear, partly because no animal model exhibits the insulin-resistant phenotype without persistent hyperglycemia. Here we established an AD model with whole-body insulin resistance without persistent hyperglycemia (APP/IR-dKI mice) by crossbreeding constitutive knock-in mice with P1195L-mutated insulin receptor (IR-KI mice) and those with mutated amyloid precursor protein (AppNL-G-F mice: APP-KI mice). APP/IR-dKI mice exhibited cognitive impairment at an earlier age than APP-KI mice. Since cholinergic dysfunction is a major characteristic of AD, pharmacological interventions on the cholinergic system were performed to investigate the mechanism. Antagonism to a nicotinic acetylcholine receptor α7 (nAChRα7) suppressed cognitive function and cortical blood flow (CBF) response to cholinergic-regulated peripheral stimulation in APP-KI mice but not APP/IR-dKI mice. Cortical expression of Chrna7, encoding nAChRα7, was downregulated in APP/IR-dKI mice compared with APP-KI. Amyloid β burden did not differ between APP-KI and APP/IR-dKI mice. Therefore, insulin resistance, not persistent hyperglycemia, induces the earlier onset of cognitive dysfunction and CBF deregulation mediated by nAChRα7 downregulation. Our mouse model will help clarify the association between type 2 diabetes mellitus and AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号