首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of NF-κB has been reported to play a key role in causing endotoxin-induced hepatic damage through enhanced production of reactive oxygen species and pro-inflammatory mediators. In this context, the potential of polyphenolic phytochemicals in preventing endotoxin-induced liver damage remains unclear. Here, we demonstrate that catechin and quercetin have the potential to down-regulate the initial signalling molecule NF-κB which may further inhibit the downstream cascade including TNF-α and NO. These results were confirmed using N-nitro-L-arginine methyl ester (L-NAME), the inhibitor of inducible nitric oxide synthase (iNOS) along with the biochemical and histological alterations occurring in the presence and absence of supplementation with both the polyphenols. However, catechin was found to be more effective than quercetin against endotoxin-induced liver injury. These findings suggest that these polyphenols may form a pharmacological basis for designing a therapeutic agent against endotoxin-mediated oxidative damage.  相似文献   

2.
The present study was aimed at investigating the hepatoprotective effect of pyrroloquinoline quinone (PQQ) against acute alcoholic liver injury in mice. Acute alcoholic liver injury model was established in mice, and they were administrated with PQQ to investigate its hepatoprotective effect. Our results shows that PQQ can significantly ameliorate acute alcoholic liver injury by decreasing the hepatic marker enzymes, including serum alanine transaminase (ALT) and aspartate transaminase (AST), and increasing the levels of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in the liver. And PQQ can also significantly reduce the content of hepatic triglyceride (TG) and malondialdehyde (MDA). Moreover, PQQ attenuated alcohol-induced oxidative damage by activating NF-E2-related factor 2 (Nrf2)-mediated signaling pathway, and inhibiting Toll-like receptor 4 (TLR4)-mediated nuclear factor-kappa B (NF-κB) signaling pathway. Our findings have elucidated the liver protection mechanism of PQQ, which would encourage the further exploitation of PQQ as a hepatoprotective functional food.  相似文献   

3.
Activation of Kupffer cells (KCs) by gut-derived lipopolysaccharide (LPS) and Toll-Like Receptors 4 (TLR4)-LPS-mediated increase in TNFα production has a central role in the pathogenesis of alcoholic liver disease. Micro-RNA (miR)-125b, miR-146a, and miR-155 can regulate inflammatory responses to LPS. Here we evaluated the involvement of miRs in alcohol-induced macrophage activation. Chronic alcohol treatment in vitro resulted in a time-dependent increase in miR-155 but not miR-125b or miR-146a levels in RAW 264.7 macrophages. Furthermore, alcohol pretreatment augmented LPS-induced miR-155 expression in macrophages. We found a linear correlation between alcohol-induced increase in miR-155 and TNFα induction. In a mouse model of alcoholic liver disease, we found a significant increase in both miR-155 levels and TNFα production in isolated KCs when compared with pair-fed controls. The mechanistic role of miR-155 in TNFα regulation was indicated by decreased TNFα levels in alcohol-treated macrophages after inhibition of miR-155 and by increased TNFα production after miR-155 overexpression, respectively. We found that miR-155 affected TNFα mRNA stability because miR-155 inhibition decreased whereas miR-155 overexpression increased TNFα mRNA half-life. Using the NF-κB inhibitors, MG-132 or Bay11-7082, we demonstrated that NF-κB activation mediated the up-regulation of miR-155 by alcohol in KCs. In conclusion, our novel data demonstrate that chronic alcohol consumption increases miR-155 in macrophages via NF-κB and the increased miR-155 contributes to alcohol-induced elevation in TNFα production via increased mRNA stability.  相似文献   

4.
5.
Mishra A  Paul S  Swarnakar S 《Biochimie》2011,93(5):854-866
Matrix metalloproteinases (MMPs) have been implicated in inflammatory and degradative processes in several diseases. The study aims to explore the mechanism of MMP-9 regulation in alcohol-induced acute liver injury and its protection by melatonin in mice. Alcohol-induced acute liver injury was induced in female Balb/C mice by ethanol administration and protection studies were carried out with a well-known antioxidant molecule, melatonin. Degree of liver injury was monitored by histological and biochemical analysis of liver tissues. Oral administration of ethanol in mouse caused significant increase in alanine amino transferase (ALT) activity in serum. Depletion of glutathione and enhancement of lipid peroxidation as well as protein oxidation was observed in liver tissues following ethanol treatment. However, melatonin exhibited potent hepatoprotective activity by inhibiting ALT activity and oxidative stress. Additionally, MMP-9 expression was increased by ethanol in a dose and time dependent manner in liver tissue and serum. Increased secretion of proMMP-9 was strongly correlated with the expression of proinflammatory cytokines e.g., tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL6. Melatonin showed hepatoprotective role by downregulation of MMP-9 and upregulation of tissue inhibitor of metalloproteases (TIMP-1) expression in liver tissue. Nuclear factor (NF)-κB, plays an important role in inducing inflammatory genes during oxidative stress, thus the role of NF-κB in ethanol-induced liver injury was investigated. Ethanol induced nuclear translocation of NF-κB and increased degradation of inhibitor of NF-κB (IκBα) in liver tissues. Moreover, ethanol-induced NF-κB translocation into nucleus was inhibited significantly by melatonin. This is the first study to elucidate the induction of MMP-9 expression by NF-κB-dependent pathway in ethanol-induced acute liver injury in mice. This study also identifies the novel role of melatonin in hepatoprotection via MMP-9 down regulation.  相似文献   

6.
Induction of NF-κB-mediated gene expression has been identified in the pathogenesis of alcoholic liver disease (ALD). Diethylcarbamazine (DEC) is a piperazine derivative drug with anti-inflammatory properties. The present study was designed to evaluate the effect of DEC on NF-κB pathways in mice undergoing alcoholism induced hepatic inflammation. Forty male C57BL/6 mice were divided equally into four groups: control group (C); DEC-treated group, which received 50 mg/kg (DEC50); alcoholic group (EtOH), submitted to chronic alcohol consumption and the alcohol-DEC treated group (EtOH50), submitted to chronic alcoholism consumption plus DEC treatment. Histological analysis of the alcoholic group showed evident hepatocellular damage which was reduced in EtOH50 group. Immunohistochemistry and western blot results showed elevated expression of inflammatory markers such as MDA, TNF-α, IL-1β, COX-2 and iNOS in hepatocytes of EtOH group. However, low immunopositivity for these markers was detected following DEC treatment. In the EtOH group the activation of NF-κB was observed by an increase in the expression of both NF-κB and pNF-κB in hepatocytes. This expression was significantly reduced in livers of EtOH50 group. Protein expression of Iκβα was measured to determine whether activation of NF-κB might be the result of Iκβα degradation. It was observed that expression of this protein was low in EtOH group, while animals treated with DEC had a high expression of Iκβα. The results of the present study indicate that DEC alleviates alcoholic liver injury, in part by the inhibiting activation of NF-κB and by suppressing the induction of NF-κB-dependent genes.  相似文献   

7.
The excessive consumption of alcohol results in a dysbiosis of the gut microbiota, which subsequently impairs the gut microbiota-brain/liver axes and induces cognitive dysfunction and hepatic injury. This study aimed to investigate the potential effect of Acetobacter pasteurianus BP2201 in reducing the negative effects of alcohol consumption on cognitive function and liver health by modulating the gut microbiota-brain/liver axes. Treatment with A. pasteurianus BP2201 improved alcohol-induced hippocampal damage, suppressed neuroinflammation, promoted neuroprotein expression in the hippocampus and enhanced cognitive function. At the same time, A. pasteurianus BP2201 can also reduce serum lipid levels, relieve oxidative stress, inhibit TLR4/MyD88/NF-κB pathway, reduce the secretion of TNF-α and IL-1β, so as to improve alcoholic liver injury. Concomitantly, the treatment with A. pasteurianus BP2201 leads to a shift in the intestinal microbiota structure towards that of healthy individuals, inhibiting the proliferation of harmful bacteria and promoting the recovery of beneficial bacteria. In addition, it also improves brain cognitive dysfunction and liver health by affecting the gut microbiota-brain/liver axes by promoting the synthesis of relevant amino acids and the metabolism of nucleotide base components. These findings demonstrate the potential of regulating the gut microbiome and gut microbiota-brain/liver axes to mitigate alcohol-induced disease.  相似文献   

8.
9.
Zinc prevention and treatment of alcoholic liver disease   总被引:9,自引:0,他引:9  
Alcoholic liver disease (ALD) is associated with decreases in zinc (Zn) and its major binding protein, metallothionein (MT), in the liver. Studies using animal models have shown that Zn supplementation prevents alcohol-induced liver injury under both acute and chronic alcohol exposure conditions. There are hepatic and extrahepatic actions of Zn in the prevention of alcoholic liver injury. Zn supplementation attenuates ethanol-induced hepatic Zn depletion and suppresses ethanol-elevated cytochrome P450 2E1 (CYP2E1) activity, but increases the activity of alcohol dehydrogenase in the liver; an action that is likely responsible for Zn suppression of alcohol-induced oxidative stress. Zn also enhances glutathione-related antioxidant capacity in the liver. At the cellular level, Zn inhibits alcohol-induced hepatic apoptosis partially through suppression of the Fas/FasL-mediated pathway. Zn supplementation preserves intestinal integrity and prevents endotoxemia, leading to inhibition of endotoxin-induced tumor necrosis factor-alpha (TNF-alpha) production in the liver. Zn also directly inhibits the signaling pathway involved in endotoxin-induced TNF-alpha production. These hepatic and extrahepatic effects of Zn are independent of MT. However, low levels of MT in the liver sensitize the organ to alcohol-induced injury, and elevation of MT enhances the endogenous Zn reservoir and makes Zn available when oxidative stress is imposed. Zn has a high potential to be developed as an effective agent in the prevention and treatment of ALD.  相似文献   

10.
11.
AimsWe investigated the effects of globin digest (GD) and its active ingredient Trp-Thr-Gln-Arg (WTQR) on galactosamine/lipopolysaccharide (GalN/LPS)-induced liver injury in imprinting control region (ICR) mice.Main methodsThe effects of WTQR and GD on the liver injury were examined by measuring the survival rate, serum aminotransferase activities, hepatic components, antioxidant enzyme activities, histopathological analysis, serum levels and hepatic gene expression of tumor necrosis factor-alpha (TNF-α), macrophage inflammatory protein-2 (MIP-2), and nitric oxide (NO) or inducible nitric oxide synthase (iNOS), and nuclear factor-kappa B (NF-κB) p65 content in GalN/LPS-treated ICR mice. RAW264 mouse macrophages were used to confirm the anti-inflammatory effects of WTQR and GD on the macrophages.Key findingsWTQR and GD increased the survival rate, suppressed the serum aminotransferase activities, serum levels and hepatic gene expression of TNF-α, MIP-2, and NO or iNOS, and nuclear NF-κB p65 content in GalN/LPS-treated mice; decreased the oxidized glutathione content, increased the superoxide dismutase activity, and decreased the histopathological grade values of the hepatocyte necrosis and lobular inflammation in GalN/LPS-injured liver; and suppressed the release levels and gene expression of TNF-α, MIP-2, and NO or iNOS, and nuclear NF-κB p65 content in LPS-stimulated RAW264 macrophages. WTQR and GD may improve the antioxidant defense system and inflammatory status in GalN/LPS-injured liver.SignificanceThese findings indicate that WTQR and GD have hepatoprotective effects on GalN/LPS-induced liver injury in ICR mice.  相似文献   

12.
Antioxidants are likely potential pharmaceutical agents for the treatment of alcoholic liver disease. Metallothionein (MT) is a cysteine-rich protein and functions as an antioxidant. This study was designed to determine whether MT confers resistance to acute alcohol-induced hepatotoxicity and to explore the mechanistic link between oxidative stress and alcoholic liver injury. MT-overexpressing transgenic and wild-type mice were administrated three gastric doses of alcohol at 5 g/kg. Liver injury, oxidative stress, and ethanol metabolism-associated changes were determined. Acute ethanol administration in the wild-type mice caused prominent microvesicular steatosis, along with necrosis and elevation of serum alanine aminotransferase. Ultrastructural changes of the hepatocytes include glycogen and fat accumulation, organelle abnormality, and focal cytoplasmic degeneration. This acute alcohol hepatotoxicity was significantly inhibited in the MT-transgenic mice. Furthermore, ethanol treatment decreased hepatic-reduced glutathione, but increased oxidized glutathione along with lipid peroxidation, protein oxidation, and superoxide generation in the wild-type mice. This hepatic oxidative stress was significantly suppressed in the MT-transgenic mice. However, MT did not affect the ethanol metabolism-associated decrease in NAD(+)/NADH ratio or increase in cytochrome P450 2E1. In conclusion, MT is an effective agent in cytoprotection against alcohol-induced liver injury, and hepatic protection by MT is likely through inhibition of alcohol-induced oxidative stress.  相似文献   

13.
Development of hepatocellular carcinoma (HCC) is accompanied by a continuous increase in reactive oxygen species (ROS) levels. To investigate the primary source of ROS in liver cells, we used tumor necrosis factor-alpha (TNF-α) as stimulus. Applying inhibitors against the respiratory chain complexes, we identified mitochondria as primary source of ROS production. TNF-α altered mitochondrial integrity by mimicking a mild uncoupling effect in liver cells, as indicated by a 40% reduction in membrane potential and ATP depletion (35%). TNF-α-induced ROS production activated NF-κB 3.5-fold and subsequently enhanced migration up to 12.7-fold. This study identifies complex I and complex III of the mitochondrial respiratory chain as point of release of ROS upon TNF-α stimulation of liver cells, which enhances cell migration by activating NF-κB signalling.  相似文献   

14.
Procyanidin B2 (PB2), a naturally occurring flavonoid abundant in a wide range of fruits, has been shown to exert antioxidant, anti-inflammatory and anticancer properties. However, the role of PB2 in the prevention of cold stimulation (CS)-induced liver injury. The present study was undertaken to determine the effects of PB2 on liver injury induced by cold stimulation and its potential molecular mechanisms. The present study results showed that treatment with PB2 significantly reduced CS-induced liver injury by alleviating histopathological changes and serum levels of alanine transaminase and aspartate transaminase. Moreover, treatment with PB2 inhibited secretion of inflammatory cytokines and oxidative stress in cold-stimulated mice. PB2 reduced cold stimulation-induced inflammation by inhibiting TLR4/NF-κB and Txnip/NLRP3 signalling. Treatment with PB2 reduced oxidative stress by activating Nrf-2/Keap1, AMPK/GSK3β signalling pathways and autophagy. Furthermore, simultaneous application of Shh pathway inhibitor cyclopamine proved that PB2 targets the Hh pathway. More importantly, co-treatment with PB2 and cyclopamine showed better efficacy than monotherapy. In conclusion, our findings provide new evidence that PB2 has protective potential against CS-induced liver injury, which might be closely linked to the inhibition of Shh signalling pathway.  相似文献   

15.
16.
Toll-like receptor 4 (TLR4) activation has been implicated in the pathogenesis of myocardial ischemia/reperfusion (I/R) injury. The activated TLR4 is capable of activating a variety of proinflammatory mediators, such as tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6). Valsartan as a kind of Angiotensin II type 1 receptor blockers is gradually used for the treatment of ischemic heart disease depending on its anti-inflammation function. Therefore, we hypothesized that valsartan protects against myocardial I/R injury by suppressing TLR4 activation. We constructed the rat model of myocardial I/R injury. The rats were pretreated with valsartan for 2 weeks, and then subjected to 30 min ischemia and 2 h reperfusion. TLR4 and Nuclear factor kappa-B (NF-κB) levels were detected by quantitative real-time PCR and western blot. In order to evaluate myocardial damage, the myocardial infarct size, histopathologic changes, and the release of myocardial enzymes, proinflammation cytokines and Angiotensin II were analyzed by triphenyl tetrazolium chloride (TTC) staining, light microscopy, and enzyme-linked immunosorbent assay (ELISA), respectively. Valsartan preconditioning inhibited TLR4 and NF-κB expressions concomitant with an improvement in myocardial injury, such as smaller infarct size, fewer release of myocardial enzymes, and proinflammation mediators. These findings suggest that valsartan plays a pivotal role in the protective effects on myocardial I/R injury. This protection mechanism is possibly due to its anti-inflammation function via TLR4/NF-κB signaling pathway.  相似文献   

17.
Osteoclasts are responsible for bone resorption and play a pivotal role in the pathogenesis of osteolytic disorders. NF-κB is a set of nuclear factors that bind to consensus DNA sequences called κB sites, and is essential for osteoclast formation and survival. NF-κB signalling pathways are strictly regulated to maintain bone homeostasis by cytokines such as RANKL, TNF-α and IL-1, which differentially regulate classical and/or alternative NF-κB pathways in osteoclastic cells. These pathways are also modulated by NF-κB mediators, including TRAF6, aPKC, p62/SQSTM1 and deubiquitinating enzyme CYLD that are involved in the ubiquitin–proteasome system during RANK-mediated osteoclastogenesis. Abnormal activation of NF-κB signalling in osteoclasts has been associated with excessive osteoclastic activity, and frequently observed in osteolytic conditions, including periprosthetic osteolysis, arthritis, Paget's disease of bone, and periodontitis. NF-κB modulators such as parthenolide and NEMO-binding domain peptide demonstrate therapeutic effects on inflammation-induced bone destruction in mouse models. Unravelling the structure and function of NF-κB pathways in osteoclasts and other cell types will be important in developing new strategies for treatments of bone diseases.  相似文献   

18.
胱硫醚-γ-裂解酶(cystathionine γ-lyase, CSE)是合成内源性H2S的核心酶之一。CSE/H2S体系可介导多种信号转导途径减轻机体炎性损伤。而有氧运动已被证实对机体免疫功能具促进作用,但是否通过CSE/H2S体系介导炎性通路发挥效应,其机制有待深入研究。本研究旨在探讨有氧运动通过CSE/H2S体系抑制TLR4/NF-κB信号通路对酒精性肝损伤的改善作用。选取3周龄健康雄性昆明(KM)种小鼠50只,随机分成酒精性脂肪肝病组(AFLD)[模型组(M)、有氧运动组(E)、有氧运动+NaHS组(EN)、有氧运动+PAG组(EP)]、空白组(K),每组10只。干预7周,解剖学观察发现,M组小鼠脂肪系数、脏器系数均高于K组(P<0.01)。ELISA酶联免疫结果显示,相比K组,M组谷草转氨酶、谷丙转氨酶水平增高,CSE活性下降,丙二醛含量上升,蛋白质羰基化程度上升及谷胱甘肽含量下降(P<0.01, P<0.05)。去蛋白质法检测发现,外周血H2S含量升高(P<0.01)。HE染色显示,M组肝组织结构紊乱,呈现大量脂滴空泡样变,且胞核畸形位变。给予有氧运动干预及腹腔注射NaHS,可显著减轻肝质变及肝功能症状,提升血清H2S含量和CSE活性(P<0.01)。而腹腔注射PAG可加剧酒精性肝损伤。免疫组织化学染色显示,相比M组,E、EN组TLR4、NF-κB、IL-1β阳性表达面积下降(P<0.01)。实时荧光定量PCR显示,相比M组,E组、EN组CSE、TLR4、NF-κB、IL-1β mRNA表达显著下降(P<0.01),EP组无显著差异(P>0.05)。Illumina高通量测序筛选肝组织炎症相关因子及关联分析显示,差异表达因子主要富集在NF-κB、TGF-β、TNF、TOLL样受体等信号通路,涉及肝组织细胞信号转导、凋亡抑制和免疫反应等,有氧运动及NaHS可降低炎症和免疫相关信号通路的富集。以上研究结果表明,有氧运动可促进小鼠肝组织中CSE/H2S气体信号体系的表达,从而抑制TLR4/NF-κB通路促炎过程,拮抗小鼠酒精性肝损伤,且有氧运动结合外源性H2S供体对TLR4/NF-κB的干预效果更佳。  相似文献   

19.
Increasing evidence suggests that innate immunity plays an important role in alcohol-induced liver injury and most studies have focused on positive regulation of innate immunity. The main objective of this study was to investigate the negative regulator of innate immunity, IL-1/Toll-like receptor (TLR) signaling pathways and interleukin receptor-associated kinase-M (IRAK-M) in alcoholic liver injury. We established an alcohol-induced liver injury model using wild type and IRAK-M deficient B6 mice and investigated the possible mechanisms. We found that in the absence of IRAK-M, liver damage by alcohol was worse with higher alanine transaminase (ALT), more immune cell infiltration and increased numbers of IFNγ producing cells. We also found enhanced phagocytic activity in CD68+ cells. Moreover, our results revealed altered gut bacteria after alcohol consumption and this was more striking in the absence of IRAK-M. Our study provides evidence that IRAK-M plays an important role in alcohol-induced liver injury and IRAK-M negatively regulates the innate and possibly the adaptive immune response in the liver reacting to acute insult by alcohol. In the absence of IRAK-M, the hosts developed worse liver injury, enhanced gut permeability and altered gut microbiota.  相似文献   

20.
目的:探讨给予牛磺酸预处理对肢体缺血/再灌注(limb ischemia-reperfusion,H/R)后大鼠肝脏损伤及,INn、NF—KB表达的影响及意义。方法:采用Wistar大鼠建立LI/R损伤模型,随机分为4组(n=10):对照(C)组,缺血/再灌注(I/R)组,牛磺酸(T)组和牛磺酸+缺血/再灌注(TR)组。比色法测定动物血浆ALT、AST、MDA,肝组织MDA、MPO、DNA裂解率和钙含量,放免法检测血浆及肝组织TNF-α水平;HE染色观察肝脏组织形态改变;免疫组化法观察NF-κB蛋白表达。结果:与C组比较,I/R和TR组各损伤性指标、TNF-α水平均升高,NF-κB蛋白表达增高(P〈0.01);但TR组上述各项指标较I/R组显著降低。结论:牛磺酸预处理可减轻大鼠LI/R所致肝脏损伤,降低TNF-α、NF-κB表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号