首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Using dietary administration, mice were exposed to eight substances known to cause peroxisome proliferation (i.e. clofibrate clofibric acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, nafenopin, ICI-55.897, S-8527 and Wy-14.643) or the related substance p-chlorophenoxyacetic acid (group A). Other animals received di(2-ethylhexyl)phthalate, mono(2-ethylhexyl)phthalate, 2-ethylhexanoic acid, or one of 12 other metabolically and/or structurally related compounds (group B). The effects of these treatments on liver cytosolic and microsomal epoxide hydrolases, microsomal cytochrome P-450, cytosolic glutathione transferase activity, the liver-somatic index and the protein contents of the microsomal and cytosolic fractions prepared from liver were subsequently monitored. In general, peroxisome proliferation was accompanied by increases in cytosolic epoxide hydrolase activity. Many peroxisome proliferators also caused increases in microsomal epoxide hydrolase activity, although the correlation was poorer in this case. Immunochemical quantitation by radial immunodiffusion demonstrated that the increases observed in both of these enzyme activities reflected equivalent increases in enzyme protein, i.e. that induction truly occurred. Induction of total microsomal cytochrome P-450 was obtained after dietary exposure to clofibrate, clofibric acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, nafenopin, Wy-14.643, di(2-ethylhexyl)phthalate and di(2-ethylhexyl)phosphate. The most pronounced effects on cytosolic glutathione transferase activity were the decreases obtained after treatment with clofibrate, clofibric acid and Wy-14.643. Our results, together with those reported by others, suggest that the processes of peroxisome proliferation and induction of cytosolic epoxide hydrolase are intimately related. One possible explanation for this is presented.  相似文献   

2.
The enzymatic mechanisms involved in the degradation of phenanthrene by the white rot fungus Pleurotus ostreatus were examined. Phase I metabolism (cytochrome P-450 monooxygenase and epoxide hydrolase) and phase II conjugation (glutathione S-transferase, aryl sulfotransferase, UDP-glucuronosyltransferase, and UDP-glucosyltransferase) enzyme activities were determined for mycelial extracts of P. ostreatus. Cytochrome P-450 was detected in both cytosolic and microsomal fractions at 0.16 and 0.38 nmol min(sup-1) mg of protein(sup1), respectively. Both fractions oxidized [9,10-(sup14)C]phenanthrene to phenanthrene trans-9,10-dihydrodiol. The cytochrome P-450 inhibitors 1-aminobenzotriazole (0.1 mM), SKF-525A (proadifen, 0.1 mM), and carbon monoxide inhibited the cytosolic and microsomal P-450s differently. Cytosolic and microsomal epoxide hydrolase activities, with phenanthrene 9,10-oxide as the substrate, were similar, with specific activities of 0.50 and 0.41 nmol min(sup-1) mg of protein(sup-1), respectively. The epoxide hydrolase inhibitor cyclohexene oxide (5 mM) significantly inhibited the formation of phenanthrene trans-9,10-dihydrodiol in both fractions. The phase II enzyme 1-chloro-2,4-dinitrobenzene glutathione S-transferase was detected in the cytosolic fraction (4.16 nmol min(sup-1) mg of protein(sup-1)), whereas aryl adenosine-3(prm1)-phosphate-5(prm1)-phosphosulfate sulfotransferase (aryl PAPS sulfotransferase) UDP-glucuronosyltransferase, and UDP-glucosyltransferase had microsomal activities of 2.14, 4.25, and 4.21 nmol min(sup-1) mg of protein(sup-1), respectively, with low activity in the cytosolic fraction. However, when P. ostreatus culture broth incubated with phenanthrene was screened for phase II metabolites, no sulfate, glutathione, glucoside, or glucuronide conjugates of phenanthrene metabolites were detected. These experiments indicate the involvement of cytochrome P-450 monooxygenase and epoxide hydrolase in the initial phase I oxidation of phenanthrene to form phenanthrene trans-9,10-dihydrodiol. Laccase and manganese-independent peroxidase were not involved in the initial oxidation of phenanthrene. Although P. ostreatus had phase II xenobiotic metabolizing enzymes, conjugation reactions were not important for the elimination of hydroxylated phenanthrene.  相似文献   

3.
The cytochrome P-450 content of nuclear membranes isolated from the livers of male Sprague-Dawley rats fed a semipurified diet containing 0.05% w/w 2-acetylaminofluorene (AAF) for 3 weeks, was only about 20% of the values in control rats fed the same diet devoid of AAF. This effect was apparent after only 1 week of AAF treatment and persisted in nuclear membranes from isolated hyperplastic nodules (HPN) generated by 4 cycles of interrupted AAF-feeding. The microsomal cytochrome P-450 content, on the other hand, remained at control levels after 1 week of AAF treatment, and it was only slightly decreased after 3 weeks. In contrast, microsomes from HPN generated by prolonged AAF treatment had markedly decreased amounts of cytochrome P-450. The AAF treatment also caused changes in cholesterol epoxide hydrolase activity, which paralleled those observed for cytochrome P-450 content. Nuclear membranes from livers of rats fed AAF for 3 weeks, and from isolated HPN, had only 30-50% of the cholesterol epoxide hydrolase activity present in controls, whereas the microsomal enzyme activity remained at control levels after 3 weeks of AAF feeding but was 50% depressed in microsomes from HPN. The selective loss of cytochrome P-450 and of cholesterol epoxide hydrolase in hepatic nuclear membrane, but not in microsomes, of rats fed AAF for 3 weeks suggests independent control for these enzymes in these two membrane fractions. Cytochrome P-450 plays a role both in the activation of AAF (N-hydroxylation) as well as in its detoxification (ring hydroxylation) whereas cholesterol epoxide hydrolase initiates the detoxification of cholesterol epoxide. Therefore, our findings suggest the hypothesis that AAF treatment causes an early loss, at the surface of the nucleus, of the last line of defense for detoxification of transforming or promoting metabolites generated by microsomal activation of natural substances such as cholesterol and of xenobiotics such as AAF.  相似文献   

4.
The coding nucleotide sequence for rat liver microsomal, xenobiotic epoxide hydrolase was determined from two overlapping cDNA clones, which together contain 1750 nucleotides complementary to epoxide hydrolase mRNA. The single open reading frame of 1365 nucleotides codes for a 455 amino acid polypeptide with a molecular weight of 52,581. The deduced amino acid composition agrees well with those determined by direct amino acid analysis of the rat protein, and the amino acid sequence is 81% identical to that of rabbit epoxide hydrolase. Analysis of codon usage for epoxide hydrolase, and that of rabbit epoxide hydrolase. Analysis of codon usage for epoxide hydrolase, and comparison to codon usage for NADPH-cytochrome P-450 oxidoreductase and cytochromes P-450b, P-450d, and P-450PCN, suggest that epoxide hydrolase is more conserved than cytochromes P-450b and P-450PCN; comparison of the extent of sequence conservation for 12 homologous proteins between the rat and rabbit, including cytochrome P-450b, supports this hypothesis, and indicates that much of epoxide hydrolase is constrained to maintain its hydrophobic character, consistent with its intramembranous location. The predicted membrane topology of epoxide hydrolase delineates 6 membrane-spanning segments, less than the 8 or 10 predicted for two cytochrome P-450 isozymes; the lower number of membrane-spanning segments predicted for epoxide hydrolase correlates with its lesser dependence on the membrane for maintenance of its tertiary structure and catalytic activity.  相似文献   

5.
This study was performed in order to study the response of epoxide hydrolases in different subcellular compartments of mouse liver to treatment with various compounds. Male C57BL/6 mice were treated with 31 different compounds--including traditional inducers of xenobiotic-metabolizing systems, liver carcinogens, stilbene derivatives, endogenous compounds and various other drugs and xenobiotics. The effects on liver somatic index; protein contents in 'mitochondria', microsomes and cytosol prepared from the liver; epoxide hydrolase activity towards trans- or cis-stilbene oxide in these three fractions; microsomal cytochrome P-450 content; cytosolic and 'mitochondrial' glutathione transferase activity and cytosolic DT-diaphorase activity were then determined. Cytosolic epoxide hydrolase activity was induced by chlorinated paraffins, di(2-ethylhexyl)phthalate and clofibrate and depressed by alpha-naphthylisothiocyanate, 3-methylcholanthrene, benzil and quercitin. Radial immunodiffusion revealed similar changes in the amount of enzyme protein present, except for two cases, where the increase in amount was larger; and the enzyme seems to be inhibited by benzil. Microsomal epoxide hydrolase activity was induced by these same compounds and several others as well, including dibenzoylmethane, butylated hydroxyanisole and polychlorinated biphenyls. 'Mitochondrial' epoxide hydrolase activity towards trans-stilbene oxide was not affected by those compounds which induced the cytosolic enzyme, but increased about two-fold after treatment with 2-acetylaminofluorene, DL-ethionine, aflatoxin B1 and phenobarbital. There does not seem to be any co-regulation of different forms of epoxide hydrolase in mouse liver. In general small effects were observed on liver weight and protein contents in the different subcellular fractions. Polychlorinated biphenyls were the most potent of the 8 compounds which induced cytochrome P-450, while butylated hydroxyanisole induced cytosolic glutathione transferase activity to the highest extent. 'Mitochondrial' glutathione transferase activity was most induced by certain of the stilbene derivatives. The most potent inducers of DT-diaphorase activity were 3-methylcholanthrene, polychlorinated biphenyls and dinitrotoluene.  相似文献   

6.
Rat liver sections were incubated with antibodies (100-1000 micrograms IgG/ml) against microsomal cytochromes P-450a, P-450b, and P-450c, and epoxide hydrolase. Inhibition of indirect immunofluorescence, which progressed with higher concentrations of primary antibody, corresponded with antigen-enriched tissue in frozen liver sections from male and female rats. It was found in liver sections from phenobarbital-treated rats incubated with anti-P-450b and anti-epoxide hydrolase and from 3-methylcholanthrene-treated rats incubated with anti-P-450c. No inhibition was found in sections from untreated rats or rats receiving treatments that did not induce the specific antigen. No inhibition was found in sections incubated with anti-P-450a. Inhibition of immunofluorescence was abolished in frozen sections subjected to dehydration-rehydration protocols known to extract antigens, and was prevented by certain solvents and detergent-wash. Inhibition of immunofluorescence provides a unique method for confirming the antigen-rich regions of the liver lobules specific for microsomal expoxide hydrolase and the cytochrome P-450s.  相似文献   

7.
Steroid 17 alpha-hydroxylase has emerged as a key enzyme in steroidogenic cells: (i) it represents the branch point between the 17-deoxy (mineralo) and the 17-hydroxy (gluco) corticosteroid pathways in the adrenal cortex; (ii) the corresponding specific cytochrome (P-450(17 alpha] is highly dependent upon hormonal regulation; and (iii) the enzyme also catalyzes the steroid 17-20 lyase reaction, leading to the major androgens in the testis. As a prerequisite to the study of its regulation in intact cell, 17 alpha-hydroxylase was purified from calf testis microsomal preparations. Following five chromatographic steps, the enzyme was obtained as an apparently homogeneous protein of Mr = 57 kDa upon gel electrophoresis. The procedure yielded a recovery of about 10% as judged by cytochrome P-450 assay. Whereas 17 alpha-hydroxylase specific activity was about 30-fold enriched during the purification, that of the C17-20 lyase was increased by about 6-fold, strongly suggesting that its organelle environment may modulate the enzymatic activity. The purified enzyme yielded a 20 N-terminal amino-acid sequence showing a complete homology with that of its adrenal counterpart and a polyclonal antibody raised against our preparation revealed a 57 kDa protein band in bovine adrenocortical microsomal extracts, upon immunoblotting experiments. It was thus concluded that bovine 17 alpha-hydroxylase activity is supported by highly similar if not identical enzymatic proteins in both testis and adrenal cortex tissues. The purified P-450(17 alpha) preparation is now being used in reconstitution experiments which suggest that microsomal components may contribute to a different expression of the enzyme specificity in its native testis or adrenocortical intracellular environment, respectively.  相似文献   

8.
Cytosolic epoxide hydrolase   总被引:3,自引:0,他引:3  
Epoxide hydrolase activity is recovered in the high-speed supernatant fraction from the liver of all mammals so far examined, including man. For some as yet unexplained reason, the rat has a very low level of this activity, so that cytosolic epoxide hydrolase is generally studied in mice. This enzyme selectively hydrolyzes trans epoxides, thereby complementing the activity of microsomal epoxide hydrolase, for which cis epoxides are better substrates. Cytosolic epoxide hydrolase has been purified to homogeneity from the livers of mice, rabbits and humans. Certain of the physicochemical and enzymatic properties of the mouse enzyme have been thoroughly characterized. Neither the primary amino acid, cDNA nor gene sequences for this protein are yet known, but such characterization is presently in progress. Unlike microsomal epoxide hydrolase and most other enzymes involved in xenobiotic metabolism, cytosolic epoxide hydrolase is not induced by treatment of rodents with substances such as phenobarbital, 2-acetylaminofluorene, trans-stilbene oxide, or butylated hydroxyanisole. The only xenobiotics presently known to induce cytosolic epoxide hydrolase are substances which also cause peroxisome proliferation, e.g., clofibrate, nafenopin and phthalate esters. These and other observations indicate that this enzyme may actually be localized in peroxisomes in vivo and is recovered in the high-speed supernatant because of fragmentation of these fragile organelles during homogenization, i.e., recovery of this enzyme in the cytosolic fraction is an artefact. The functional significance of cytosolic epoxide hydrolase is still largely unknown. In addition to deactivating xenobiotic epoxides to which the organism is exposed directly or which are produced during xenobiotic metabolism, primarily by the cytochrome P-450 system, this enzyme may be involved in cellular defenses against oxidative stress.  相似文献   

9.
Cytochromes P-450 and epoxide hydrolase in hamsters were studied by using two-dimensional gel electrophoresis of hepatic microsomes from untreated animals and those treated with phenobarbital, 3-methylcholanthrene, beta-naphthoflavone, trans-stilbene oxide, and pregnenolone-16 alpha-carbonitrile. Coelectrophoresis with corresponding microsomes from rats and in situ peptide mapping were used to identify resolved microsomal polypeptides as cytochromes P-450 or epoxide hydrolase. Two forms of hepatic microsomal epoxide hydrolase were shown to exist in hamsters; these evidenced extensive structural homology with the corresponding enzyme in rats and were induced by the same xenobiotics. At least eight inducible polypeptides in microsomes from hamsters were tentatively identified as cytochromes P-450. Two of these were electrophoretically identical and structurally related with previously characterized forms of the enzyme in rats. Homologues of several major cytochromes P-450 induced by pregnenolone-16 alpha-carbonitrile and/or phenobarbital in the rat were apparently not present in the hamster. In most cases, putative forms of inducible cytochrome P-450 in the hamster existed at significant levels in microsomes from untreated animals whereas in rats the levels of most inducible forms of the enzyme were low in control microsomes, being more strictly dependent on xenobiotic pretreatment. In contrast with epoxide hydrolase, the molecular complexity of hepatic cytochrome P-450 seems to be comparable for rats and hamsters, but the structure and control of these hemoproteins appear to have markedly diverged.  相似文献   

10.
In principle, target inactivation analysis provides a means of determining the molecular weights (Mr) and states of aggregation of proteins in native environments where they are functionally active. We applied this irradiation technique to the rat liver microsomal membrane proteins: cytochrome b5, epoxide hydrolase, flavin-containing monooxygenase, NADH-ferricyanide reductase, NADPH-cytochrome P-450 reductase, and seven different forms of cytochrome P-450. Catalytic activities, spectral analysis of prosthetic groups, and sodium dodecyl sulfate-polyacrylamide electrophoresis/peroxidase-coupled immunoblotting were used to estimate apparent Mr values in rat liver microsomal membranes. Except in one case (cytochrome P-450PCN-E), the estimated Mr corresponded most closely to that of a monomer. Purified cytochrome P-450PB-B, NADPH-cytochrome P-450 reductase and epoxide hydrolase were also subjected to target inactivation analysis, and the results also suggested monomeric structures for all three proteins under these conditions. However, previous hydrodynamic and gel-exclusion results clearly indicate that all three of these proteins are oligomeric under these conditions. The discrepancy between target inactivation Mr estimates and hydrodynamic results is attributed to a lack of energy transfer between monomeric units. Thus, while P-450PCN-E may be oligomeric in microsomal membranes, target inactivation analysis does not appear to give conclusive results regarding the states of aggregation of these microsomal proteins.  相似文献   

11.
12.
A procedure for the preparation of monospecific antibody directed against rat liver microsomal cytochrome P-45-a is described. This antibody, together with monospecific antibodies to cytochromes P-450b and P-450c, has been used to show that these three forms of cytochrome P-450 are distinct and share no common antigenic determinants. These antibodies (a) give single immunoprecipitin bands with detergent-solubilized microsomes; (b) do not cross-react with the purified heterologous antigens in Ouchterlony double diffusion analyses; (c) have no effect on catalytic activity of the heterologous antigens but completely inhibit the enzymatic activity of the homologous antigens; and (d) remove only the homologous antigen from detergent-solubilized microsomes when covalently bound to a solid support. With radial immunodiffusion assay, we have quantitated these three forms of cytochrome P-450 in liver microsomes after treatment of rats with seven different inducers of cytochrome P-450. The levels of these cytochrome P-450 isozymes vary independently and are also regulated by the age and sex of the animal. The antibodies have also been used to assess the contribution of cytochromes P-450a, P-450b, and P-450c in the metabolism of xenobiotics by rat liver microsomes. A large proportion of benzo(a)pyrene metabolism and testosterone 16 alpha-hydroxylation in microsomes from untreated rats is not catalyzed by cytochromes P-450a, P-450b, and P-450c. Epoxide hydrolase, another microsomal enzyme involved in the metabolism of xenobiotics, was also quantitated by radial immunodiffusion after prior treatment of rats with microsomal enzyme inducers. The inductions of epoxide hydrolase varies independently of the induction of cytochromes P-450a, P-450b, and P-450c.  相似文献   

13.
The in vivo turnover rates of liver microsomal epoxide hydrolase and both the heme and apoprotein moieties of cytochromes P-450a, P-450b + P-450e, and P-450c have been determined by following the decay in specific radioactivity from 2 to 96 h after simultaneous injections of NaH14CO3 and 3H-labeled delta-aminolevulinic acid to Aroclor 1254-treated rats. Total liver microsomal protein was characterized by an apparent biphasic exponential decay in specific radioactivity, with half-lives of 5-9 and 82 h for the fast- and slow-phase components, respectively. Most (approximately 90%) of the rapidly turning over microsomal protein fraction was immunologically distinct from membrane-associated serum protein, and thus appeared to represent integral membrane proteins. The existence of two distinct populations of cytochrome P-450a was suggested by the apparent biphasic turnover of both the heme and apoprotein moieties of the holoenzyme. The half-lives of the apoprotein were estimated to be 12 and 52 h for the fast- and slow-phase components, respectively, and 7 and 34 h for the heme moiety. The turnover of cytochromes P-450b + P-450e was identical to that of cytochrome P-450c, with half-lives of 37 and 28 h for the apoprotein and heme moieties, respectively. In all cases, the shorter half-lives of the heme component compared to the protein component were statistically significant. In contrast to the cytochrome P-450 isozymes, epoxide hydrolase (t1/2 = 132 h) turned over slower than the "average" microsomal protein (t1/2 = 82 h). The differential rates of degradation of these major integral membrane proteins during both the rapid and slow phases of total microsomal protein turnover argue against the concepts of unit membrane degradation and unidirectional membrane flow of liver endoplasmic reticulum.  相似文献   

14.
Enzymes metabolizing xenobiotics in spontaneous tumors in mice   总被引:2,自引:0,他引:2  
The microsomal monooxygenase activity in spontaneous mouse hepatomas has been studied. The cytochrome P-450 level in hepatomas was shown to be 2 times as low as that in the liver. The reduction of the cytochrome P-450 content in the tumour was accompanied by a decrease in the activity of benz(a)pyrene hydroxylase, amino-pyrene-N-demethylase and p-nitroanisole-O-demethylase. However, 7-ethoxycoumarin-O-deethylase activity in hepatomas was much higher than in the liver both estimated as mg of the microsomal protein and nmol of cytochrome P-450. The cytochrome b5 content in the hepatomas was comparable with its level in the liver. A more elevated content of NADPH-cytochrome c reductase and microsomal epoxide hydrolase activity was found in the hepatomas. The results obtained provide evidence of different oxidation effects regarding some substrates in the liver and hepatomas. The ratio of cytochrome P-450 isoforms is likely to change in the hepatomas in contrast with that in the liver.  相似文献   

15.
Exposure of adult rats to 1 ATA O2 during 55 hrs. decreased cytochrome P-450 in the homogenate supernatant of livers. Hepatic microsomal epoxide hydrolase and P-nitrophenol UDP-glucuronosyltransferase activities were also decreased. Histological and ultrastructural liver studies showed tissular and cellular modifications suggestive of hepatocyte hypoxia.  相似文献   

16.
Direct evidence is presented for the role of a cytochrome P-450 monooxygenase (called mixed-function oxidase, or polysubstrate mono-oxygenase, PSMO) in the metabolism of the sex pheromone (Z)-9-tricosene to its corresponding epoxide and ketone in the housefly. A secondary alcohol, most likely an intermediate in the conversion of the alkene to the ketone, was also tentatively identified. The results of in vivo and in vitro experiments showed that the PSMO inhibitors, piperonyl butoxide (PB) and carbon monoxide, markedly inhibited the formation of epoxide and ketone from (9,10-3H) (Z)-9-tricosene. An examination of the relative rates of (Z)-9-tricosene metabolism showed that males exhibited a higher rate of metabolism than females with the antennae of males showing the highest activity of any tissue/organ examined. The major product from all tissues/organs was the epoxide. Data from experiments with subcellular fractions showed that the microsomal fraction had the majority of enzyme activity, which was strongly inhibited by PB and CO and required NADPH and O2 for activity. A carbon monoxide difference spectrum with reduced cytochrome showed maximal absorbance at 450 nm and allowed quantification of the cytochrome P-450 in the microsomal fraction of 0.410-nmol cytochrome P-450 mg?1 protein. Interaction of (Z)-9-tricosene with the cytochrome P-450 resulted in a type I spectrum, indicating that the pheromone binds to a hydrophobic site adjacent to the heme moiety of the oxidized cytochrome P-450.  相似文献   

17.
Highly specific antibodies against hemeprotein were obtained by immunizing rabbits with a highly purified cholesterol-hydroxylating cytochrome P-450scc from adrenocortical mitochondria. The antibodies do not specifically interact with other components of the adrenocortical electron transport chain, e. g., adrenodoxin reductase and adrenodoxin. Using double immunodiffusion technique (Ouchterlony method), it was shown that the antibodies did not precipitate the microsomal cytochromes P-450 LM2 and LM4, cytochrome b5 and 11 beta-hydroxylating cytochrome P-450 from adrenocortical mitochondria. Antibodies against cytochrome P-450scc inhibited the cholesterol side chain cleavage activity of cytochrome P-450scc in a reconstituted system. Limited proteolysis with trypsin and immunoelectrophoresis in the presence of specific antibodies revealed that antigenic determinants are present of the heme-containing catalytic domain of cytochrome P-450scc (F1) as well as on the domain responsible for the interaction with the phospholipid membrane (F2).  相似文献   

18.
The time course of induction of rat liver microsomal cytochromes P-450a, P-450b + P-450e, P-450c, and P-450d and epoxide hydrolase has been determined in immature male rats administered a single large dose [1500 mumol (500 mg)/kg body wt] of the polychlorinated biphenyl mixture Aroclor 1254. Differential regulation of these xenobiotic-metabolizing enzymes was indicated by their characteristic patterns of induction. The rate of induction of cytochrome P-450a and epoxide hydrolase was relatively slow, and steady-state levels of these enzymes were maintained from approximately Days 9 to 15 after Aroclor 1254 treatment. In contrast, cytochrome P-450c was maximally induced 2 days after Aroclor 1254 treatment and remained at a constant level through Day 15. Steady-state levels of cytochrome P-450d, beginning 1 week after Aroclor 1254 treatment, were preceded by a fairly rapid rate of induction and possibly by a small decline from maximal levels observed around Days 4 to 5. Like those of the other cytochrome P-450 isozymes and epoxide hydrolase, the levels of cytochromes P-450b + P-450e were constant from Day 9 to 15 after Aroclor 1254 treatment. However, an unexpected but reproducible decline (approximately 25%) in total cytochrome P-450 content observed between Days 4 and 9 after Aroclor 1254 treatment principally reflected a dramatic and totally unanticipated decrease (approximately 45%) in the level of cytochromes P-450b + P-450e. This transient decline in the level of cytochromes P-450b + P-450e was not due to an unusual effect of a mixture of polychlorinated biphenyls, since identical results were obtained with two individual congeners, namely 2,3,4,5,4'-penta- and 2,3,4,5,3',4'-hexachlorobiphenyl, that induced the same isozymes as Aroclor 1254. In contrast, when rats were treated with 2,4,5,2',4',5'-hexachlorobiphenyl, which induces cytochromes P-450a and P-450b + P-450e and epoxide hydrolase but not cytochromes P-450c or P-450d, maximal levels of cytochromes P-450b + P-450e were attained on Day 4 and no decrease was observed over the next 11 days. These results suggest that there may be an interaction in the regulation of induction of certain individual cytochrome P-450 isozymes.  相似文献   

19.
The basal level of benzo(a)pyrene monooxygenase, epoxide hydrolase and glutathione S-transferase activity as well as the content of cytochrome P-450 were found the same in both compared benzo(a)pyrene (BP) sensitive D. simulans strain 364yv and BP-resistant wild one (Turku). Phenobarbital pretreatment resulted in the same increase level of these enzyme activities in both strains. BP-pretreatment of 364yv flies decreased the amount of the cytochrome P-450 but raised up the turnover of BP per molecule of cytochrome P-450. SDS-polyacrylamide gel electrophoresis of the microsomal proteins from BP-pretreated 364yv flies (but not from Turku) showed an increased hemoprotein content in the 56000 band. The relationship between BP-sensitivity of the strain 364yv and BP-induced aberrant isoform of the cytochrome P-450 has been discussed.  相似文献   

20.
Antibodies raised to homogeneous rat liver microsomal epoxide hydrolase were used to distinguish microsomal epoxide hydrolase from epoxide hydrolase of cytosolic origin in mice and rats. Using double diffusion analysis in agarose gels, we show that anti-rat liver microsomal epoxide hydrolase forms a single precipitin line with solubilized microsomes from rat and mouse liver, but no reaction is seen with the corresponding cytosolic fractions. Rat or mouse microsomal epoxide hydrolase activity (using benzo[a]pyrene 4,5-oxide as substrate) can be completely precipitated out of solubilized preparations by the antibody, which is equipotent against rat and mouse microsomal epoxide hydrolase. No precipitation of cytosolic hydrolase activity (using trans-beta-ethyl styrene oxide as substrate) is seen with any concentration of the antibody tested. Thus, in the case of microsomal epoxide hydrolase, extensive immunological cross-reactivity exists between the two species, rat and mouse. In contrast, no cross-reactivity is detectable between cytosolic and microsomal epoxide hydrolase, even when enzymes from the same species are compared. We conclude that microsomal and cytosolic epoxide hydrolase activities represent distinct and immunologically non-cross-reactive protein species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号