首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extent to which diaphragmatic fatigue results from failure of neural drive has been investigated using twitch occlusion. Fatigue was induced by repeatedly generating transdiaphragmatic pressures (Pdi) of either 50 or 75% maximum Pdi (Pdimax) until approximately 10 min after the target Pdi could no longer be reached (Tlim). Maximal bilateral shocks delivered periodically to the phrenic nerves elicited Pdi twitches between breaths (Tr) and superimposed on the voluntary contractions (Ts). The ratio [1 - Ts/Tr], which provides an index of the degree of central nervous system muscle activation, increased as fatigue developed. However, superimposed twitches were still detectable at and beyond Tlim when all contractions involved maximal efforts. They were not seen in maximal contractions of the unfatigued muscle. Initially, the diaphragm electromyogram increased, but then declined. No impairment of neuromuscular transmission was seen. We conclude that at and beyond Tlim about one-half of the reduction in Pdimax resulted from reduced central motor drive; the remainder resulted from peripheral muscle contractile failure. No fatigue was evident during 50% Pdimax dynamic contractions.  相似文献   

2.
Transdiaphragmatic pressure (Pdi) and the rate of relaxation of the diaphragm (tau) were measured at functional residual capacity (FRC) in six normal seated subjects during single-twitch stimulation of both phrenic nerves. The latter were stimulated supramaximally with needle electrodes with square-wave impulses of 0.1-ms duration at 1 Hz before and after diaphragmatic fatigue produced by resistive loaded breathing. Constancy of chest wall configuration was achieved by monitoring the diameter of the abdomen and the rib cage with a respiratory inductive plethysmograph system. During control the peak Pdi generated during the phrenic stimulation amounted to 34.4 +/- 4.2 (SE) cmH2O and represented in each subject a fixed fraction (17%) of its maximal transdiaphragmatic pressure. After diaphragmatic fatigue the peak Pdi decreased by an average of 45%, amounting to 18.1 +/- 2.7 cmH2O 5 min after the fatigue run, and tau increased from 55.2 +/- 9 ms during control to 77 +/- 8 ms 5 min after the fatigue run. The decrease in peak Pdi and the increase in tau observed after the fatigue run persisted throughout the 30 min of the recovery period studied, the peak Pdi amounting to 18.4 +/- 2.8 and 18.9 +/- 3.3 cmH2O and tau to 81.3 +/- 5.7 and 88.7 +/- 10 ms at 15 and 30 min after the end of the fatigue run, respectively. It is concluded that diaphragmatic fatigue can be detected in man by bilateral phrenic stimulation with needle electrodes without any discomfort for the subject and that the decrease in diaphragmatic strength after fatigue is long lasting.  相似文献   

3.
Aminophylline and human diaphragm strength in vivo   总被引:4,自引:0,他引:4  
The transdiaphragmatic pressure (Pdi) twitch response to single shocks from supramaximal bilateral phrenic nerve stimulation was studied before and after acute intravenous infusions of aminophylline [14.9 +/- 3.1 (SD) micrograms/ml] in nine normal subjects. Stimulation was performed with subjects in the sitting position against an occluded airway from end expiration. Baseline gastric pressure and abdominal and rib cage configuration were kept constant. There was no significant difference in peak twitch Pdi from the relaxed diaphragm between control (38.8 +/- 3.3 cmH2O) and aminophylline (40.2 +/- 5.2 cmH2O) experiments. Other twitch characteristics including contraction time, half-relaxation time, and maximum relaxation rate were also unchanged. The Pdi-twitch amplitude at different levels of voluntary Pdi was measured with the twitch occlusion technique, and this relationship was found to be similar under control conditions and after aminophylline. With this technique, maximum Pdi (Pdimax) was calculated as the Pdi at which stimulation would result in no Pdi twitch because all motor units are already maximally activated. No significant change was found in mean calculated Pdimax between control (146.9 +/- 27.0 cmH2O) and aminophylline (149.2 +/- 26.0 cmH2O) experiments. We conclude from this study that the acute administration of aminophylline at therapeutic concentrations does not significantly affect contractility or maximum strength of the normal human diaphragm in vivo.  相似文献   

4.
We investigated the selective effects of changes in transdiaphragmatic pressure (Pdi) and duty cycle on diaphragmatic blood flow in supine dogs at normal arterial pressure (N), moderate hypotension (MH), and severe hypotension (SH) [mean arterial pressure (Part) of 116, 75, and 50 mmHg, respectively]. The diaphragm was paced at a rate of 12/min by bilateral phrenic nerve stimulation. Left phrenic (Qphr-T) and left internal mammary (Qim-T) arterial flows were measured by electromagnetic flow probes. Changes in Pdi and duty cycle were achieved by changing the stimulation frequencies and the duration of contraction, whereas Part changes were produced by bleeding. With N and at a duty cycle of 0.5, incremental increases in Pdi produced peaks in Qphr-T and Qim-T at 30% maximum diaphragmatic pressure (Pdimax) with a gradual decline at higher Pdi. With MH and SH, blood flow peaked at 10% Pdimax. At any given Pdi, blood flow was lower with MH and SH in comparison to N. The effect of duty cycle was tested at two levels of Pdi. With N and at low Pdi (25% Pdimax), blood flow rose progressively with increases in duty cycle, whereas at moderate Pdi level (50% Pdimax) blood flow peaked at a duty cycle of 0.3, with no increase thereafter. With MH, blood flow at low Pdi rose linearly with increasing duty cycle but to a lesser extent than with N, and at a moderate Pdi flow peaked at a duty cycle of 0.3. With SH, blood flow at low and moderate Pdi was limited at duty cycles greater than 0.3 and 0.1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Effect of abdominal compression on maximum transdiaphragmatic pressure   总被引:1,自引:0,他引:1  
Transdiaphragmatic pressure (Pdi) is lower during maximum inspiratory effort with the diaphragm alone than when maximum inspiratory and expulsive efforts are combined. The increase in Pdi with expulsive effort has been attributed to increased neural activation of the diaphragm. Alternatively, the increase could be due to stretching of the contracted diaphragm. If this were so, Pdi measured during a combined maximum effort would overestimate the capacity of the diaphragm to generate inspiratory force. This study determined the likely contribution of stretching of the contracted diaphragm to estimates of maximum Pdi (Pdimax) obtained during combined inspiratory and expulsive effort. Three healthy trained subjects were studied standing. Diaphragmatic Mueller maneuvers were performed at functional residual capacity and sustained during subsequent abdominal compression by either abdominal muscle expulsive effort or externally applied pressure. Measurements were made of changes in abdominal (Pab) and pleural (Ppl) pressure, Pdi, rib cage and abdominal dimensions and respiratory electromyograms. Three reproducible performances of each maneuver from each subject were analyzed. When expulsive effort was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 86 +/- 12 to 148 +/- 14 (SD) cmH2O within the 1st s and was 128 +/- 14 cmH2O 2 s later. When external compression was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 87 +/- 16 to 171 +/- 19 cmH2O within the 1st s and was 152 +/- 16 cmH2O 2 s later.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The forces generated by the cat diaphragm (DIA) during different ventilatory and nonventilatory behaviors were determined by measuring transdiaphragmatic pressures (Pdi). The Pdi generated during eupnea was only approximately 12% of the maximum Pdi (Pdimax) generated by bilateral phrenic nerve stimulation. When the animals breathed a gas mixture of 10% O2 and 5% CO2, the Pdi increased to approximately 28% of Pdimax. During total airway occlusion, the Pdi generated by the diaphragm increased to approximately 49% of Pdimax. Only during the gag reflex and sneezing did Pdi reach maximal levels. A model for diaphragm motor unit recruitment during these different behaviors was presented based on the proportion of different motor unit types within the diaphragm, the relative tetanic tensions produced by each unit type, and the assumption of an orderly pattern of motor unit recruitment.  相似文献   

7.
We developed a new technique of diaphragmatic stimulation by apposing plate electrodes directly against the diaphragm (DPS) in adult Golden Syrian hamsters. The electrophysiological and the mechanical responses to DPS were compared with those with phrenic nerve stimulation. In four animals, evaluation of the electromyogram before and after curare demonstrated that plate electrode stimulation occurred via the phrenic nerve filaments. In four animals, similar transdiaphragmatic pressure was produced at maximal current with DPS and phrenic nerve stimulation. Using DPS increasing current beyond a certain level resulted in recruitment of muscles besides the diaphragm. In six animals, an external abdominal pressure of 15 cmH2O produced maximal transdiaphragmatic pressure, suggesting that the diaphragm was contracting near optimal position with this external abdominal pressure. In another four animals the twitch and pressure-frequency characteristics with the use of DPS were found to be reproducible over a 2-h period. We conclude that DPS is an effective method of diaphragmatic stimulation and should prove to be a valuable technique to study the diaphragm in long-term studies of small rodents.  相似文献   

8.
The effects of phrenic nerve cooling at 0 degrees C on the nerve and diaphragmatic function were evaluated in dogs. Eleven dogs, anesthetized and mechanically ventilated, were studied. Left diaphragmatic function was assessed by recording the transdiaphragmatic pressure (Pdi) generated during electrical stimulation of the left phrenic nerve at different frequencies (0.5, 30, and 100 Hz). Phrenic nerve stimulations were achieved either directly by electrodes placed around the phrenic nerve above its pericardial course or by intramuscular electrodes placed close to the phrenic nerve endings. Electrical activity of the hemidiaphragm (Edi) was recorded and phrenic nerve conduction time (PNCT) was measured during direct phrenic stimulation. A transpericardial cooling of the nerve, at 0 degrees C, on a length of 1 cm, was performed during 30 min (group A, n = 7) or 5 min (group B, n = 4). After the cooling period, phrenic and diaphragmatic functions were assessed hourly for 4 h (H1-H4). Cooling the phrenic nerve produced a complete phrenic nerve conduction block in all dogs, 100 +/- 10 s after the onset of cold exposure. Conduction recovery time was longer in group A (11 +/- 7 min) than in group B (2 +/- 0.5 min) and PNCT remained increased throughout the study in group A. Furthermore, in group A, Pdi and Edi during direct phrenic stimulation were markedly depressed from H1 to H4. No change in these parameters was noted until H3 during intramuscular stimulation, time at which a significant decrease occurred. By contrast, Pdi and Edi from direct and intramuscular stimulations remained unchanged throughout the study in group B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Abdominal muscles are the most important expiratory muscles for coughing. Spinal cord-injured patients have respiratory complications because of abdominal muscle weakness and paralysis and impaired ability to cough. We aimed to determine the optimal positioning of stimulating electrodes on the trunk for the noninvasive electrical activation of the abdominal muscles. In six healthy subjects, we compared twitch pressures produced by a single electrical pulse through surface electrodes placed either posterolaterally or anteriorly on the trunk with twitch pressures produced by magnetic stimulation of nerve roots at the T(10) level. A gastroesophageal catheter measured gastric pressure (Pga) and esophageal pressure (Pes). Twitches were recorded at increasing stimulus intensities at functional residual capacity (FRC) in the seated posture. The maximal intensity used was also delivered at total lung capacity (TLC). At FRC, twitch pressures were greatest with electrical stimulation posterolaterally and magnetic stimulation at T(10) and smallest at the anterior site (Pga, 30 +/- 3 and 33 +/- 6 cm H(2)O vs. 12 +/- 3 cm H(2)O; Pes 8 +/- 2 and 11 +/- 3 cm H(2)O vs. 5 +/- 1 cm H(2)O; means +/- SE). At TLC, twitch pressures were larger. The values for posterolateral electrical stimulation were comparable to those evoked by thoracic magnetic stimulation. The posterolateral stimulation site is the optimal site for generating gastric and esophageal twitch pressures with electrical stimulation.  相似文献   

10.
We studied the effects of intravenously administered terbutaline on diaphragmatic force and fatigue during electrical stimulation of the diaphragm in 17 anesthetized dogs. The diaphragm was stimulated indirectly through the phrenic nerves with electrodes placed around the fifth roots and directly with electrodes surgically implanted in the abdominal side of each hemidiaphragm. Transdiaphragmatic pressure (Pdi) during direct or indirect supramaximal 2-s stimulation applied over a frequency range of 10-100 Hz was measured with balloon catheters during tracheal occlusion at functional residual capacity. In seven dogs the administration of terbutaline (0.5 mg) had no effect on Pdi at any stimulation frequency applied directly or indirectly. The effect of terbutaline (0.5 mg) on diaphragmatic fatigue was then tested in 10 other dogs. Diaphragmatic fatigue was produced by continuous 20-Hz electrical supramaxial stimulation of the phrenic nerves during 30 min. At the end of the fatigue procedure Pdi decreased by 50 +/- 5 and 30 +/- 8% of control values at 10 and 100 Hz, respectively, for either direct or indirect stimulation. The decrease in Pdi for low frequencies of stimulation (10 and 20 Hz) lasted 100 +/- 18 min, whereas it lasted only 40 +/- 10 min for the high frequencies (50 and 100 Hz). When terbutaline (0.5 mg) was administered after the fatiguing procedure, Pdi increased within 15 min by 20 +/- 4% at 10 Hz and by 12 +/- 3% at 100 Hz for either direct or indirect stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We compared the rate of relaxation of the diaphragm (RRdi) after unilateral phrenic nerve stimulation, bilateral phrenic nerve stimulations, and short sharp voluntary contractions (sniffs). RRdi was measured as the maximum rate of decline in transdiaphragmatic pressure (Pdi) corrected for the change in Pdi [maximum relaxation rate (MRR)/delta Pdi], the time constant (tau) of the later exponential decline in Pdi, and the time to half relaxation (1/2 RT). In five subjects there was no difference in mean RRdi apart from a smaller MRR/delta Pdi (P less than 0.05) for left unilateral compared with either right unilateral or bilateral needle stimulation. However, RRdi varied unpredictably between unilateral and bilateral stimulation of the phrenic nerve in individual subjects. In the same five subjects, sniffs were found to have a slower RRdi than bilateral stimulations (MRR/delta Pdi 0.0064 +/- 0.0007 vs. 0.0074 +/- 0.0018/ms, tau 57.2 +/- 8.7 vs. 48.2 +/- 7.4 ms, 1/2 RT 108.9 +/- 10.9 vs. 73.9 +/- 6.0 ms; all P less than 0.05). The application and inflation of an abdominal binder to an external pressure of 60 mmHg resulted in a decrease in functional residual capacity (-710 +/- 70 ml), but there was no effect on relaxation parameters. Our findings suggest that in the evaluation of RRdi 1) unilateral hemidiaphragmatic stimulations may not accurately reflect the in vivo contractile properties of the diaphragm, 2) sniff maneuvers are not voluntary equivalents of phrenic nerve stimulations, and 3) RRdi is not affected by abdominal binder inflation up to 60 mmHg.  相似文献   

12.
Assessment of transdiaphragmatic pressure in humans   总被引:8,自引:0,他引:8  
Maximal force developed by the diaphragm at functional residual capacity is a useful index to establish muscle weakness; however, great disparity in its reproducibility can be observed among reports in the literature. We evaluated five maneuvers to measure maximal transdiaphragmatic pressure (Pdimax) in order to establish best reproducibility and value. Thirty-five na?ve subjects, including 10 normal subjects (group 1), 12 patients with chronic obstructive pulmonary disease (group 2), and 13 patients with restrictive pulmonary disease (group 3), were studied. Each subject performed five separate maneuvers in random order that were repeated until reproducible values were obtained. The maneuvers were Mueller with (A) and without mouthpiece (B), abdominal expulsive effort with open glottis (C), two-step (maneuver C combined with Mueller effort) (D), and feedback [two-step with visual feedback of pleural (Ppl) and abdominal (Pab) pressure] (E). The greatest reproducible Pdimax values were obtained with maneuver E (P less than 0.01) (group 1: 180 +/- 14 cmH2O). The second best maneuvers were A, B, and D (group 1: 154 +/- 25 cmH2O). Maneuver C produced the lowest values. For all maneuvers, group 1 produced higher values than groups 2 and 3 (P less than 0.001), which were similar. The Ppl to Pdi ratio was 0.6 in maneuvers A and B, 0.4 in D and E, and 0.2 in C. We conclude that visual feedback of Ppl and Pab helped the subjects to elicit maximal diaphragmatic effort in a reproducible fashion. It is likely that the great variability of values in Pdimax previously reported are the result of inadequate techniques.  相似文献   

13.
Diaphragmatic force, determined by stimulating the phrenic nerve while simultaneously measuring the pressures in a closed respiratory system, was assessed in five anesthetized dogs over a 5-h period to evaluate the inherent variability of this technique. Transdiaphragmatic pressure (Pdi) was measured at functional residual capacity during stimulation (120 Hz, 0.2-ms duration) of one phrenic nerve by either direct phrenic nerve stimulation (DPNS) or transvenous phrenic nerve stimulation (TPNS). An analysis of variance showed no significant (P greater than 0.50) change during the 5-h period. There was a significant correlation (r = 0.94, P less than 0.001) between Pdi obtained by TPNS and that obtained by DPNS. It is concluded that either DPNS or TPNS can be used to evaluate diaphragmatic strength over a 5-h period and that TPNS can be used in lieu of DPNS.  相似文献   

14.
Maximum relaxation rate (MRR) and the time constant of relaxation (tau) of transdiaphragmatic pressure (Pdi) was measured in four male subjects and compared with the high-to-low frequency ratio (H/L) of the diaphragmatic electromyogram (EMG) as a predictor of diaphragmatic fatigue. Pdi and inspiratory time-to-total breath duration ratios (TI/TT) were varied, and TT and tidal volume were held constant; inspiratory resistances were used to increase Pdi. Studies were performed at various tension-time indices (TTdi = Pdi/Pdimax X TI/TT). Base-line MRR/Pdi was 0.0100 +/- 0.0004 (SE) ms-1, and baseline tau was 53.2 +/- 3.2 ms. At TTdi greater than 0.20, MRR and H/L decreased and tau increased, with maximum changes at the highest TTdi. At TTdi less than 0.20, there was no change in H/L, MRR, or tau. The time course of changes in H/L correlated with those of MRR and tau under fatiguing conditions. In this experimental setting, change in relaxation rate was as useful a predictor of diaphragmatic fatigue as fall in H/L of the diaphragmatic EMG.  相似文献   

15.
In a canine model, we investigated the effects of severe hypotension on the indexes of diaphragmatic failure. We measured 1) the transdiaphragmatic pressure obtained in response to 20- and 100-Hz stimulation of phrenic nerves (Pdi20 and Pdi100), 2) the power spectrum of diaphragmatic electromyogram (EMG), 3) the ratio of integrated diaphragmatic EMG to Pdi (Edi/Pdi), and 4) the rate of relaxation of Pdi100 and Pdi20. Arterial blood pressure (Pa) was reduced to 40-50 mmHg by a balloon inflated in the inferior vena cava and was maintained at this level until Pdi100 declined to 75% of the control value (100% shock time, ST). A recovery period of 60 min at normal Pa was allowed. During hypotension, Pdi100 and Pdi20 declined only at 100% ST [95.0 +/- 13.0 (SE) min]; however, only Pdi100 recovered within 15 min. The power spectrum shifted to low frequencies early and progressively during shock period. Edi/Pdi rose significantly at 80 and 100% ST and recovered within 15 min. The relaxation rate of Pdi20 and Pdi100 increased significantly at 100% ST only. We conclude that 1) diaphragmatic contractility is depressed during severe hypotension, 2) changes in the power spectrum occurred first in the shock state, followed by alterations in Edi/Pdi, and subsequently both changes in the frequency-pressure curve and relaxation rate occurred last.  相似文献   

16.
Inspiratory muscle fatigue can probablydetermine hypercapnic respiratory failure. Diaphragm fatigue isdetected by electrical phrenic stimulation (ELS), but there is nosimple tool to assess rib cage muscle (RCM) fatigue. Cervical magneticstimulation (CMS) costimulates the phrenic nerves and RCM. We reasonedthat changes in transdiaphragmatic pressure twitch (Pdi,tw) with CMSand ELS should be different after selective diaphragm vs. RCM fatigue. Five volunteers performed inspiratory resistive tasks while voluntarily uncoupling diaphragm and RCM. BaselinePdi,twELS andPdi,twCMS were 28.57 ± 1.68 and 32.83 ± 2.92 cmH2O. Afterselective diaphragm loading,Pdi,twELS andPdi,twCMS were reduced by 39 and26%, with comparable decreases in gastric pressure twitch (Pga,tw).Esophageal pressure twitch (Pes,tw) was better preserved with CMS.Therefore Pes,tw/Pga,tw was lower with ELS than CMS (1.24 ± 0.16 vs. 1.73 ± 0.11, P = 0.05). After selectiveRCM loading, there was no diaphragm fatigue, butPes,twCMS was significantlyreduced (30%). These findings support the role of rib cagestiffening by CMS-related RCM contraction in the ELS-CMSdifferences and suggest that CMS can be used to assess RCM fatigue.

  相似文献   

17.
Diaphragmatic function was investigated in mechanically ventilated rats during endotoxic shock (group E, n = 18) and after saline solution injection (group C, n = 8). Endotoxic shock was produced by a 1-min injection of Escherichia coli endotoxin (10 mg/kg iv) suspended in saline. Diaphragmatic strength was assessed before (T0) and 15 (T15) and 60 (T60) min after injection by measuring transdiaphragmatic pressure (Pdi) generated during bilateral phrenic stimulation at 0.5, 10, 20, 30, 50, and 100 Hz. Diaphragmatic neuromuscular transmission was assessed by measuring the integrated electrical activity of the diaphragm. Diaphragmatic endurance was assessed 75 min after injection from the rate of Pdi decline after a 30-s continuous 10-Hz phrenic stimulation. In 16 additional animals, diaphragmatic glycogen content was determined 60 min after inoculation with endotoxin (n = 8) or 0.9% sodium chloride solution (n = 8). Diaphragmatic resting membrane potential (Em) was measured in 16 additional animals 60 min after endotoxin (n = 8) or saline injection (n = 8). Mean blood pressure decreased from 74 +/- 3 to 53 +/- 6 mmHg at T60 in group E, whereas it was maintained in group C. At T60 Pdi was decreased in group E for frequencies of 50 and 100 Hz and was associated with a decreased diaphragmatic electromyographic activity of 25.3 +/- 2.5 and 26.5 +/- 5.2% for 50- and 100-Hz stimulations, respectively, in comparison with T0 values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Because the inspiratory rib cage muscles are recruited during inspiratory resistive loaded breathing, we hypothesized that such loading would preferentially fatigue the rib cage muscles. We measured the pressure developed by the inspiratory rib cage muscles during maximal static inspiratory maneuvers (Pinsp) and the pressure developed by the diaphragm during maximal static open-glottis expulsive maneuvers (Pdimax) in four human subjects, both before and after fatigue induced by an inspiratory resistive loaded breathing task. Tasks consisted of maintaining a target esophageal pressure, breathing frequency, and duty cycle for 3-5 min, after which the subjects maintained the highest esophageal pressure possible for an additional 5 min. After loading, Pinsp decreased in all subjects [control, -128 +/- 14 (SD) cmH2O; with fatigue, -102 +/- 18 cmH2O; P less than 0.001, paired t test]. Pdimax was unchanged (control, -192 +/- 23 cmH2O; fatigue, -195 +/- 27 cmH2O). These data suggest that 1) inability to sustain the target during loading resulted from fatigue of the inspiratory rib cage muscles, not diaphragm, and 2) simultaneous measurement of Pinsp and Pdimax may be useful in partitioning muscle fatigue into rib cage and diaphragmatic components.  相似文献   

19.
本实验采用串脉冲刺激兔隔神经法复制了家兔膈肌疲劳模型。测定隔肌张力(Tdi)、跨膈压(Pdi)及其频率特性(Tdi-F、Pdi-F)、呼吸流速(V)、肺阻力(RL)、膈肌肌电图(EMGdi等作为评价膈肌收缩力量的指标。结果发现:经串脉冲刺激后,Pdi-F曲线在30、50和100Hz时显著降低,Pdi、Tdi、V和跨肺压均显著下降。氨茶碱可增加隔肌收缩力,延缓膈肌疲劳过程。结果提示,用串脉冲刺激兔膈神经法建立的模型是一种灵敏、可靠和稳定的膈肌疲劳动物模型。  相似文献   

20.
The rate of relaxation of the diaphragm after stimulated (4 subjects) and voluntary (8 subjects) contractions was compared in normal young men. Stimulated contractions were induced by supramaximal unilateral phrenic nerve stimulation and voluntary contractions by short, sharp sniffs of varying tensions against an occluded airway. The rate of relaxation of the diaphragm was calculated from the rate of decline of transdiaphragmatic pressure (Pdi). In both conditions the maximum relaxation rate (MRR) was proportional to the peak transdiaphragmatic pressure (Pdi), whereas the time constant (tau) of the later exponential decline in Pdi was independent of Pdi. The mean +/- SE rate constant of relaxation (MRR/Pdi) was 0.0078 +/- 0.0002 ms-1 and the mean tau was 57 +/- 3.8 ms for stimulated contractions. The rate of relaxation after sniffs was not different, and it was not affected by either the lung volume at which occluded sniffs were performed (in the range of residual volume to functional residual capacity + 1 liter) or by the relative contribution gastric pressure made to Pdi. After diaphragmatic fatigue was induced by inspiring against a high alinear resistance there was a decrease in relaxation rate. In the 1st min postfatigue MRR/Pdi decreased (0.0063 +/- 0.0003 ms-1; P less than 0.005) and tau increased (83 +/- 5 ms; P less than 0.005). Both values returned to prefatigue levels within 5 min of the end of the studies. We conclude that the sniff may prove to be clinically useful in the detection of diaphragmatic fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号