首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Centrifugal elutriation (counterflow centrifugation) was used to develop a reproducible method for obtaining a nearly pure population of isolated alveolar type II cells. Lung was dissociated into individual cells with recrystallized trypsin, and the type II cells were partially purified by centrifugation on a discontinuous density gradient. The alveolar type II cells were finally purified by centrifugal elutriation. Cells were collected from the elutriator rotor by stepwise increases in flow rates. Cells obtained at flow rates of 7 and 14 ml per min were lymphocytes, other small cells, a few type II cells and cell debris; cells collected at flow rates of 18 and 22 ml per min were mainly type II cells; and cells collected at flow rates of 28, 34 and 43 ml per min were macrophages, some type II cells, other lung cells and cell aggregates. At flow rates of 18 and 22 ml per min, 1.9±1.0×106 cells per rat lung (mean±S.D.,n=30) were recovered of which 86±6% were type II cells. At these flow rates, 94% of the cells excluded the vital dye erythrosin B from their cytoplasm. They consumed oxygen at a rate of 101±21 nmol per hr·106 cells (mean±S.D.,n=4), and their oxygen consumption increased only 10% after 10mm sodium succinate was added. The cells incorporated [14C]leucine into protein and lipid for 4 hr. Electron micrographs of the cells collected at flow rates of 18 and 22 ml per min show a high percentage of morphologically intact alveolar type II cells. We conclude that centrifugal elutriation is a reproducible method for obtaining nearly pure, metabolically active alveolar type II cells. Postdoctoral trainee supported by Grants HL-05251 and HL-07192 from the National Heart, Lung and Blood Institute. This work was supported by U.S. Public Health Service Grants Program-Project HL-06285 and Pediatric Pulmonary SCOR HL-19185, and by a grant-in-aid from the American Heart Association (77-1098).  相似文献   

2.
Bulk separations of rat brain cells by centrifugal elutriation   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
Centrifugal elutriation (counterflow centrifugation) was used to develop a reproducible method for obtaining a nearly pure population of isolated alveolar type II cells. Lung was dissociated into individual cells with recrystallized trypsin, and the type II cells were partially purified by centrifugation on a discontinuous density gradient. The alveolar type II cells were finally purified by centrifugal elutriation. Cells were collected from the elutriator rotor by stepwise increases in flow rates. Cells obtained at flow rates of 7 and 14 ml per min were lymphocytes, other small cells, a few type II cells and cell debris; cells collected at flow rates of 18 and 22 ml per min were mainly type II cells; and cells collected at flow rates of 28, 34 and 43 ml per min were macrophages, some type II cells, other lung cells and cell aggregates. At flow rates of 18 and 22 ml per min, 1.9 +/- 1.0 x 10(6) cells per rat lung (mean +/- S.D., n=30) were recovered of which 86 +/- 6% were type II cells. At these flow rates, 94% of the cells excluded the vital dye erythrosin B from their cytoplasm. They consumed oxygen at a rate of 101 +/- 21 nmol per hr . 10(6) cells (mean +/- S.D., n=4), and their oxygen consumption increased only 10% after 10 mM sodium succinate was added. The cells incorporated [14C]leucine into protein and lipid for 4 hr. Electron micrographs of the cells collected at flow rates of 18 and 22 ml per min show a high percentage of morphologically intact alveolar type II cells. We conclude that centrifugral elutriation is a reproducible method for obtaining nearly pure, metabolically active alveolar type II cells.  相似文献   

5.
Synchronization of cells and nuclei is a powerful technique for the exact study of regulatory mechanisms and for understanding cell cycle events. Counterflow centrifugal elutriation is a biophysical cell separation technique in which cell size and sedimentation density differences of living cells are exploited to isolate subpopulations in various stages of cell cycle. Here, a protocol is described for the separation of phase-enriched subpopulations from exponentially growing Chinese hamster ovary cells at high-resolution power of elutriation. The efficiency of elutriation is confirmed by measuring the DNA content fluorimetrically and by flow cytometry. The resolution power of elutriation is demonstrated by the ability to fractionate nuclei of murine pre-B cells. The installation and elutriation by collecting 16-30 synchronized fractions, including particle size analysis, can be achieved in 4-5 h.  相似文献   

6.
Synchronization of 9L rat brain tumor cells by centrifugal elutriation   总被引:1,自引:0,他引:1  
Asynchronous 9L cells were separated into relatively homogeneously-sized populations using centrifugal elutriation with both a conventional collection method and a long collection method. A substantial increase in the homogeneity of the volume distributions and in the degree of synchrony of the separated fractions was obtained using the long collection method. Autoradiographic data indicated that fractions containing greater than or equal to 97% G1 cells, greater than or equal to 80% S cells, and 70-75% G2 cells could be routinely recovered with this procedure. Recovery in these fractions varied from 5 to 8% of the total number of cells elutriated. The colony forming efficiency (CFE) of cells from fractions representing each phase of the cell cycle was a constant 60-70%, which was comparable to the 60-80% usually found for asynchronous 9L cells. The percentage of cells in the G1, S, and G2 phases in the elutriated fractions was more accurately determined from the volume distribution than from computer fits of the DNA histogram obtained from flow cytometry. In genereal, the degree of synchrony was related to the coefficient of variation (CV) of the volume distributions of the elutriated fractions. The CV was about 14% for all elutriated fractions. When the greater than or equal to 97% G1 population was allowed to progress to S and G2, the CVs were about 17 and 20.2%, respectively. Thus, the best nonperturbing method for obtaining synchronous 9L cells in the S or G2 phases was direct elutriation with the long collection method.  相似文献   

7.
Asynchronous 9L cells were separated into relatively homogeneously-sized populations using centrifugal elutriation with both a conventional collection method and a long collection method. A substantial increase in the homogeneity of the volume distributions and in the degree of synchrony of the separated fractions was obtained using the long collection method. Autoradiographic data indicated that fractions containing ≥97% G1 cells, ≥80% S cells, and 70–75% G2 cells could be routinely recovered with this procedure. Recovery in these fractions varied from 5 to 8% of the total number of cells elutriated. The colony forming efficiency (CFE) of cells from fractions representing each phase of the cell cycle was a constant 60–70%, which was comparable to the 60–80% usually found for asynchronous 9L cells. The percentage of cells in the G1, S, and G2 phases in the elutriated fractions was more accurately determined from the volume distribution than from computer fits of the DNA histogram obtained from flow cytometry. In general, the degree of synchrony was related to the coefficient of variation (CV) of the volume distributions of the elutriated fractions. The CV was about 14% for all elutriated fractions. When the ≥97% G1 population was allowed to progress to S and G2, the CVs were about 17 and 20.2%, respectively. Thus, the best nonperturbing method for obtaining synchronous 9L cells in the S or G2 phases was direct elutriation with the long collection method.  相似文献   

8.
HL-60 leukemia cells were fractionated into G1 and S/G2 populations using a rapid centrifugal elutriation technique, and studied for differences between the cell-cycle phases. The G1 fraction was found to contain smaller cells with a sedimentation velocity of 7 mm/h. The S/G2 fraction consisted of larger cells with a sedimentation velocity of 125 mm/h. The latter fraction was found to have a peak level of the enzyme (2'-5')An-binding protein, as compared to the G1 fraction, indicating a possible role for (2'-5')An-binding protein and its products in the growth regulation of these leukemic cells. In addition, cytofluorometric analysis of fractionated HL-60 cells indicates that elutriation is an effective fractionation method, rapidly yielding large numbers of cells for study, without the use of chemical treatments.  相似文献   

9.
10.
11.
We describe protocols for the fractionation of isolated hepatocytes into eight sub-populations using centrifugal elutriation. The distribution of fluorescein isothiocyanate and acridine orange in hepatocytes prepared from livers pre-perfused with one of these dyes is described and used as an indicator of acinar zone derivation for each population. The cytochrome P-450 content and response to induction by 3-methylcholanthrene and phenobarbitone; the distribution of lactate dehydrogenase, glucose-6-phosphatase, pyruvate kinase and tyrosine aminotransferase activities in the sub-populations is also reported. A marked asymmetry of distribution in all these activities was observed. On the basis of putative zone derivations (based on data of fluorescent dye distribution) of eight factors studied, the distributions of six were consistent with the sub-populations being derived from different acinar zones. Two major discrepancies were noted however, the distribution of pyruvate kinase activity and the response of the sub-populations to phenobarbitone. We conclude from this study that while a metabolic heterogeneity was revealed in the sub-populations generated, further characterisation is required to determine whether acinar zone separation has occurred and if so to what extent.  相似文献   

12.
Isolated non-parenchymal cells from rat liver were separated by centrifugal elutriation into two fractions consisting of structurally intact Kupffer and endothelial cells with purities of 91 and 95%, respectively. Purified Kupffer and endothelial cells showed nearly equal specific activities for the lysosomal enzyme acid phosphatase, whereas the specific activity of cathepsin D was about 3 times higher in Kupffer cells. It was calculated that a significant amount of the cathepsin D activity in the liver is present in the Kupffer cells.  相似文献   

13.
14.
Isolation of cell cycle fractions by counterflow centrifugal elutriation   总被引:5,自引:0,他引:5  
Counterflow centrifugal elutriation (CCE) has been used to fractionate cell populations on the basis of sedimentation properties, with minimal perturbation of metabolic function. Therefore, it is an ideal method for the isolation of cell cycle phase specific populations. We present modifications of the standard Beckman centrifugal elutriation system which permit standardization of the elutriation procedure and eliminate inter-run variability. We provide elutriation parameters for the cell cycle fractionation of a variety of cultured cell lines and suggest ways to improve the quality of the cell separations. In addition, we describe protocols for the fractionation of up to 3.50 X 10(8) cells in the small (JE-6B) Beckman elutriation system. This represents a four- to eight-fold increase in cell numbers over current cell fractionation procedures. Cell cycle populations containing greater than 95% G1, greater than 80% S, and greater than 70% G2/M were consistently obtained using these protocols. Finally, we analyzed phase-enriched fractions from several cultured cell lines for the cell cycle regulation of the enzyme thymidine kinase. The data confirm previous findings that CCE is an excellent means of obtaining physiologically unperturbed cell cycle phase specific fractions.  相似文献   

15.
A new method using centrifugal elutriation for subcellular fractionation of plant cells has been developed. This method takes advantage of the fact that particles sedimenting in a gravitational field can be eluted by flow against the field. A wheat protoplast homogenate was fed into an elutriation rotor spinning at high speed and the flow rate into the rotor was gradually increased. The smaller and less dense materials such as mitochondria, microbodies, endoplasmic reticulum, and cytoplasm were elutriated earlier than the larger and denser nuclei and chloroplasts. The intact chloroplasts, free of mitochondria, microbodies, endoplasmic reticulum, and cytoplasm, could be obtained within 40 min following the rupture of protoplasts. The chlorophyll-free mitochondria could be obtained within 80 min.  相似文献   

16.
Countercurrent centrifugal elutriation (CCE) is a cell separation technique that separates particles predominantly according to their size, and to some degree according to their specific density, without a need for antibodies or ligands tagging cell surfaces. The principles of this technique have been known for half a century. Still, numerous recent publications confirmed that CCE is a valuable supplement to current cell separation technology. It is mainly applied when homogeneous populations of cells, which mirror an in vivo situation, are required for answering scientific questions or for clinical transplantation, while antibodies or ligands suitable for cell isolation are not available. Currently, new technical developments are expanding its application toward fractionation of healthy and malignant tissue cells and the preparation of dendritic cells for immunotherapy.  相似文献   

17.
18.
We have used countercurrent centrifugal elutriation (CCE) to determine the distribution of cells with respect to cell volume and buoyant density for an erythroleukemia cell line (JG6) transformed by the polycythemia strain of Friend virus (FV-P), and to determine the effect of inducing the cells to differentiate with dimethylsulfoxide (DMSO) on this distribution. CCE made it possible to obtain suspensions of modal JG6 populations virtually free of dead cells and uniform with respect to volume and buoyant density. These modal populations were assayed for specific binding of erythropoietin (Epo). Between 500 and 550 Epo receptors per cell were detected. These belonged to a single class having a dissociation constant of 0.36 nM. DMSO induction of differentiation of the JG6 cells had no effect on the number of Epo receptors expressed.  相似文献   

19.
An exponential population of Saccharomyces cerevisiae cells was fractionated by centrifugal elutriation, using water as the elutriating liquid. Evidence that the population had been fractionated according to age in the cell cycle was obtained by examining the fractions for their size distribution, their microscopic appearance after Giemsa staining, and their ability to initiate synchronous growth.  相似文献   

20.
The microorganisms in rumen contents were physically separated into five fractions on the basis of size using counter-flow centrifugal elutriation (CCE). The use of CCE allowed the microbial population to be separated in a highly repeatable manner into two protozoal and three bacterial fractions with minimal loss of material (dry weight), and with no visible damage to the microorganisms. A Coulter counter was used to determine the sizes of the organisms in each fraction. The modified CCE method is suitable for studies of the rumen microbial ecosystem that require separation of defined fractions of the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号