首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Paleontologists frequently contrast clade rank (i.e., nodal or patristic distance from the base of a cladogram) with age rank (i.e., relative first known appearances of the analyzed taxa) to measure the degree of congruence between the estimated phylogeny and the fossil record. Although some potential biases of these methods have been examined (e.g., the effect of tree imbalance), other properties of age rank/clade rank (ARCR) comparisons have not been studied in detail. A basic premise of ARCR metrics is that outgroup taxa diverged earlier than ingroups and thus should first appear in older strata. For example, given phylogeny (A,(B,C)), then taxon A should be sampled before either taxon B or taxon C. We examine this premise in the context of (1) phylogenetic theory, (2) taxonomic practice, (3) sampling intensity (R), and (4) factors other than sampling intensity (including cladogram accuracy). Simulations combining clade evolution and sampling over time indicate a poor relationship between ARCR metrics and R when all taxa are apomorphy-based monophyletic groups. However, a good relationship exists when taxa are either stem-based monophyletic groups or if workers include taxa without a priori decisions about monophyly or paraphyly. These results are not surprising because cladograms predict the order in which lineages diverged (which applies to stem-based monophyletic taxa) and the order in which morphologic grades appeared (which applies to paraphyletic taxa relative to derived monophyletic groups). Other factors that increase ARCR metrics when the average R stays the same include high temporal variation in R, budding instead of bifurcating speciation patterns, low extinction rates, cladogram inaccuracy, and (to a much lesser extent) large clade size. These results suggest several plausible explanations for patterned differences in ARCR metrics among clades, thereby compromising their validity as measures of the quality of the fossil record.  相似文献   

2.
ABSTRACT: BACKGROUND: The evolutionary relationships of closely related species have long been of interest to biologists since these species experienced different evolutionary processes in a relatively short period of time. Comparison of phylogenies inferred from DNA sequences with differing inheritance patterns, such as mitochondrial, autosomal, and X and Y chromosomal loci, can provide more comprehensive inferences of the evolutionary histories of species. Gibbons, especially the genus Hylobates, are particularly intriguing as they consist of multiple closely related species which emerged rapidly and live in close geographic proximity. Our current understanding of relationships among Hylobates species is largely based on data from the maternally-inherited mitochondrial DNAs (mtDNAs). RESULTS: To infer the paternal histories of gibbon taxa, we sequenced multiple Y chromosomal loci from 26 gibbons representing 10 species. As expected, we find levels of sequence variation some five times lower than observed for the mitochondrial genome (mtgenome). Although our Y chromosome phylogenetic tree shows relatively low resolution compared to the mtgenome tree, our results are consistent with the monophyly of gibbon genera suggested by the mtgenome tree. In a comparison of the molecular dating of divergences and on the branching patterns of phylogeny trees between mtgenome and Y chromosome data, we found: 1) the inferred divergence estimates were more recent for the Y chromosome than for the mtgenome, 2) the species H. lar and H. pileatus are reciprocally monophyletic in the mtgenome phylogeny but a H. pileatus individual falls into the H. lar Y chromosome clade. CONCLUSIONS: Based on the ~6.4 kb of Y chromosomal DNA sequence data generated for each of the 26 individuals in this study, we provide molecular inferences on gibbon and particularly on Hylobates evolution complementary to those from mtDNA data. Overall, our results illustrate the utility of comparative studies of loci with different inheritance patterns for investigating potential sex specific processes on the evolutionary histories of closely related taxa, and emphasize the need for further sampling of gibbons of known provenance.  相似文献   

3.
We seek to reconstruct the phylogenetic relationships of the damselfly genus Calopteryx, for which extensive behavioral and morphological knowledge already exists. To date, analyses of the evolutionary pathways of different life history traits have been hampered by the absence of a robust phylogeny based on morphological data. In this study, we concentrate on establishing phylogenetic information from parts of the 16S rDNA gene, which we sequenced for nine Calopteryx species and five outgroup species. The mt 16S rDNA data set did not show signs of saturated variation for ingroup taxa, and phylogenetic reconstructions were insensitive to variation of outgroup taxa. Parsimony, neighbor-joining, and maximum-likelihood reconstructions agreed on parts of the tree. A consensus tree summarizes the significant results and indicates problematic nodes. The 16S rDNA sequences support monophyly of the genera Mnais, Matrona, and Calopteryx. However, the genus Calopteryx may not be monophyletic, since Matrona basilaris and Calopteryx atrata are sister taxa under every parameter setting. The North American and European taxa each appear as monophyletic clades, while the Asian Calopteryx atrata and Calopteryx cornelia are not monophyletic. Our data implies a different paleobiogeographic history of the Eurasian and North American species, with extant Eurasian species complexes shaped by glacial periods, in contrast to extant North American species groups.  相似文献   

4.
Recent developments in the analysis of comparative data   总被引:5,自引:0,他引:5  
Comparative methods can be used to test ideas about adaptation by identifying cases of either parallel or convergent evolutionary change across taxa. Phylogenetic relationships must be known or inferred if comparative methods are to separate the cross-taxonomic covariation among traits associated with evolutionary change from that attributable to common ancestry. Only the former can be used to test ideas linking convergent or parallel evolutionary change to some aspect of the environment. The comparative methods that are currently available differ in how they manage the effects brought about by phylogenetic relationships. One method is applicable only to discrete data, and uses cladistic techniques to identify evolutionary events that depart from phylogenetic trends. Techniques for continuous variables attempt to control for phylogenetic effects in a variety of ways. One method examines the taxonomic distribution of variance to identify the taxa within which character variation is small. The method assumes that taxa with small amounts of variation are those in which little evolutionary change has occurred, and thus variation is unlikely to be independent of ancestral trends. Analyses are then concentrated among taxa that show more variation, on the assumption that greater evolutionary change in the character has taken place. Several methods estimate directly the extent to which ancestry can predict the observed variation of a character, and subtract the ancestral effect to reveal variation of phylogeny. Yet another can remove phylogenetic effects if the true phylogeny is known. One class of comparative methods controls for phylogenetic effects by searching for comparative trends within rather than across taxa. With current knowledge of phylogenies, there is a trade-off in the choice of a comparative method: those that control phylogenetic effects with greater certainty are either less applicable to real data, or they make restrictive or untestable assumptions. Those that rely on statistical patterns to infer phylogenetic effects may not control phylogeny as efficiently but are more readily applied to existing data sets.  相似文献   

5.
We used a 694 bp length of the mitochondrial ND4 gene from 40 genera to infer phylogenetic relationships among colubroid snakes. The goals of this study were to identify conserved subsets of ND4 sequence data that could be used to address (1) which nominal higher-level colubroid taxa are monophyletic, and (2) the relationships among the monophyletic lineages identified. Use of transversions only proved the most reliable and efficient means of retrieving colubroid relationships. Transversion parsimony and neighbour-joining analyses identify similar monophyletic higher-level taxa, but relationships among these lineages differ considerably between the two analyses. These differences were affected by the inclusion/exclusion of (1) transitions, (2) autapomorphies, and (3) the boid outgroups. Saturation effects among the transitions, uninformativeness of autapomorphies for clustering taxa, and long-branch and base-compositional problems among the boids lead us to regard the tree resulting from transversion parsimony analysis rooted with Acrochordus as the best current estimate of colubroid phylogenetic relationships. However, several aspects of this proposed phylogeny need further testing (e.g. the apparent diphyly of Natricinae is especially controversial). Relationships retrieved using all colubroid taxa are not obtained when sparsely or unevenly sampled experimental subsets of taxa are used instead, suggesting that long-branch problems can severely compromise elucidation of colubroid relationships if limited taxonomic sampling strategies are followed. We discuss the importance of this finding for previous molecular attempts to assess colubroid relationships. Our analyses confirm the historical validity of several nominal colubroid families and subfamilies, establish polyphyly of a few, but generally fail to resolve relationships among the monophyletic taxa we identify. More conservative character information will be required to confidently resolve the last issue.  相似文献   

6.

Background

Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete) data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny.

Methodology/Principal Findings

Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III) regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history.

Conclusions/Significance

As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.  相似文献   

7.
The causes and consequences of rapid radiations are major unresolved issues in evolutionary biology. This is in part because phylogeny estimation is confounded by processes such as stochastic lineage sorting and hybridization. Because these processes are expected to be heterogeneous across the genome, comparison among marker classes may provide a means of disentangling these elements. Here we use introns from nuclear-encoded reproductive protein genes expected to be resistant to introgression to estimate the phylogeny of the western chipmunks (Tamias: subgenus: Neotamias), a rapid radiation that has experienced introgressive hybridization of mitochondrial DNA (mtDNA). We analyze the nuclear loci using coalescent-based species-tree estimation methods and concatenation to estimate a species tree and we use parametric bootstraps and coalescent simulations to differentiate between phylogenetic error, coalescent stochasticity and introgressive hybridization. Results indicate that the mtDNA gene tree reflects several introgression events that have occurred between taxa of varying levels of divergence and at different time points in the tree. T. panamintinus and T. speciosus appear to be fixed for ancient mitochondrial introgressions from T. minimus. A southern Rocky Mountains clade appears well sorted (i.e., species are largely monophyletic) at multiple nuclear loci, while five of six taxa are nonmonophyletic based on cytochrome b. Our simulations reject phylogenetic error and coalescent stochasticity as causes. The results represent an advance in our understanding of the processes at work during the radiation of Tamias and suggest that sampling reproductive-protein genes may be a viable strategy for phylogeny estimation of rapid radiations in which reproductive isolation is incomplete. However, a genome-scale survey that can statistically compare heterogeneity of genealogical process at many more loci will be necessary to test this conclusion.  相似文献   

8.
In this study, we constructed the first molecular phylogeny of the diverse crab superfamily Majoidea (Decapoda: Pleocyemata: Brachyura), using three loci (16S, COI, and 28S) from 37 majoid species. We used this molecular phylogeny to evaluate evidence for phylogenetic hypotheses based on larval and adult morphology. Our study supports several relationships predicted from larval morphology. These include a monophyletic Oregoniidae family branching close to the base of the tree; a close phylogenetic association among the Epialtidae, Pisidae, Tychidae, and Mithracidae families; and some support for the monophyly of the Inachidae and Majidae families. However, not all majoid families were monophyletic in our molecular tree, providing weaker support for phylogenetic hypotheses inferred strictly from adult morphology (i.e., monophyly of individual families). This suggests the adult morphological characters traditionally used to classify majoids into different families may be subject to convergence. Furthermore, trees constructed with data from any single locus were more poorly resolved than trees constructed from the combined dataset, suggesting that utilization of multiple loci are necessary to reconstruct relationships in this group.  相似文献   

9.
The phylogenetic relationship between Equus przewalskii and E. caballus is often a matter of debate. Although these taxa have different chromosome numbers, they do not form monophyletic clades in a phylogenetic tree based on mtDNA sequences. Here we report sequence variation from five newly identified Y chromosome regions of the horse. Two fixed nucleotide differences on the Y chromosome clearly display Przewalski's horse and domestic horse as sister taxa. At both positions the Przewalski's horse haplotype shows the ancestral state, in common with the members of the zebra/ass lineage. We discuss the factors that may have led to the differences in mtDNA and Y-chromosomal observations.  相似文献   

10.
Dinoflagellates and apicomplexans are a strongly supported monophyletic group in rDNA phylogenies, although this phylogeny is not without controversy, particularly between the two groups. Here we use concatenated protein-coding genes from expressed sequence tags or genomic data to construct phylogenies including "typical" dinophycean dinoflagellates, a parasitic syndinian dinoflagellate, Amoebophrya sp., and two related species, Oxyrrhis marina, and Perkinsus marinus. Seventeen genes encoding proteins associated with the ribosome were selected for phylogenetic analysis. The dataset was limited for the most part by data availability from the dinoflagellates. Forty-five taxa from four major lineages were used: the heterokont outgroup, ciliates, dinoflagellates, and apicomplexans. Amoebophrya sp. was included in this phylogeny as a sole representative of the enigmatic marine alveolate or syndinian lineage. The atypical dinoflagellate O. marina, usually excluded from rDNA analyses due to long branches, was also included. The resulting phylogenies were well supported in concatenated analyses with only a few unstable or weakly supported branches; most features were consistent when different lineages were pruned from the tree or different genes were concatenated. The least stable branches involved the placement of Cryptosporidium spp. within the Apicomplexa and the relationships between P. marinus, Amoebophrya sp., and O. marina. Both bootstrap and approximately unbiased test results confirmed that P. marinus, Amoebophrya sp., O. marina, and the remaining dinoflagellates form a monophyletic lineage to the exclusion of Apicomplexa.  相似文献   

11.
Sharks are a diverse and ecologically important group, including some of the ocean's largest predatory animals. Sharks are also commercially important, with many species suffering overexploitation and facing extinction. However, despite a long evolutionary history, commercial, and conservation importance, phylogenetic relationships within the sharks are poorly understood. To date, most studies have either focused on smaller clades within sharks, or sampled taxa sparsely across the group. A more detailed species-level phylogeny will offer further insights into shark taxonomy, provide a tool for comparative analyses, as well as facilitating phylogenetic estimates of conservation priorities. We used four mitochondrial and one nuclear gene to investigate the phylogenetic relationships of 229 species (all eight Orders and 31 families) of sharks, more than quadrupling the number of taxon sampled in any prior study. The resulting Bayesian phylogenetic hypothesis agrees with prior studies on the major relationships of the sharks phylogeny; however, on those relationships that have proven more controversial, it differs in several aspects from the most recent molecular studies. The phylogeny supports the division of sharks into two major groups, the Galeomorphii and Squalimorphii, rejecting the hypnosqualean hypothesis that places batoids within sharks. Within the squalimorphs the orders Hexanchiformes, Squatiniformes, Squaliformes, and Pristiophoriformes are broadly monophyletic, with minor exceptions apparently due to missing data. Similarly, within Galeomorphs, the orders Heterodontiformes, Lamniformes, Carcharhiniformes, and Orectolobiformes are broadly monophyletic, with a couple of species 'misplaced'. In contrast, many of the currently recognized shark families are not monophyletic according to our results. Our phylogeny offers some of the first clarification of the relationships among families of the order Squaliformes, a group that has thus far received relatively little phylogenetic attention. Our results suggest that the genus Echinorhinus is not a squaliform, but rather related to the saw sharks, a hypothesis that might be supported by both groups sharing 'spiny' snouts. In sum, our results offer the most detailed species-level phylogeny of sharks to date and a tool for comparative analyses.  相似文献   

12.
Despite considerable progress in unravelling the phylogenetic relationships of microhylid frogs, relationships among subfamilies remain largely unstable and many genera are not demonstrably monophyletic. Here, we used five alternative combinations of DNA sequence data (ranging from seven loci for 48 taxa to up to 73 loci for as many as 142 taxa) generated using the anchored phylogenomics sequencing method (66 loci, derived from conserved genome regions, for 48 taxa) and Sanger sequencing (seven loci for up to 142 taxa) to tackle this problem. We assess the effects of character sampling, taxon sampling, analytical methods and assumptions in phylogenetic inference of microhylid frogs. The phylogeny of microhylids shows high susceptibility to different analytical methods and datasets used for the analyses. Clades inferred from maximum‐likelihood are generally more stable across datasets than those inferred from parsimony. Parsimony trees inferred within a tree‐alignment framework are generally better resolved and better supported than those inferred within a similarity‐alignment framework, even under the same cost matrix (equally weighted) and same treatment of gaps (as a fifth nucleotide state). We discuss potential causes for these differences in resolution and clade stability among discovery operations. We also highlight the problem that commonly used algorithms for model‐based analyses do not explicitly model insertion and deletion events (i.e. gaps are treated as missing data). Our results corroborate the monophyly of Microhylidae and most currently recognized subfamilies but fail to provide support for relationships among subfamilies. Several taxonomic updates are provided, including naming of two new subfamilies, both monotypic.  相似文献   

13.
Nemeth  S.  Mai  T.T.  Zechman  F.W. 《Journal of phycology》2000,36(S3):51-52
Phylogenetic hypotheses for the pantropical marine green algal genus, Caulerpa , were inferred based on analyses of nuclear-encoded rDNA internal transcribed spacer (ITS) sequences. Results of these analyses were used to assess the correspondence between rDNA phylogeny and traditional sectional taxonomy, to identify synapomorphic morphological characters (including assimilator morphology and chloroplast ultrastructure), and to examine marine biogeographic hypotheses for the genus. Ribosomal DNA ITS sequences were aligned for thirty-three species and intraspecific taxa of Caulerpa. Results indicate limited correspondence between phylogeny and sectional taxonomy for the genus, (e.g., the sections Filicoideae and Sedoideae were not monophyletic). In contrast, chloroplast morphology could be mapped to the tree topology with limited homoplasy. Pantropical isolates of the filicoidean species, Caulerpa sertularioides and Caulerpa mexicana each formed monophyletic groups. Caulerpa reyesii was included as a derived taxon within the Caulerpa taxifolia clade, suggesting that these species were conspecific and affirmed the lack of correspondence between phylogeny and assimilator morphology. Isolates and various intraspecific taxa of Caulerpa racemosa did not form a monophyletic group. Instead, these taxa formed a heterogeneous assemblage with other sedoidean and filicoidean taxa. Within the C. sertularioides clade, Caribbean and Atlantic isolates formed a basal paraphyletic group, whereas eastern and western Pacific isolates formed a more derived monophyletic group. Therefore, these results are not consistent with an Indo-West Pacific origin of this species.  相似文献   

14.
The human papillomaviruses (HPVs) have long been thought to follow a monophyletic pattern of evolution with little if any evidence for recombination between genomes. On the basis of this model, both oncogenicity and tissue tropism appear to have evolved once. Still, no systematic statistical analyses have shown whether monophyly is the rule across all HPV open reading frames (ORFs). We conducted a taxonomic analysis of 59 mucosal/genital HPVs using whole-genome and sliding-window similarity measures; maximum-parsimony, neighbor-joining, and Bayesian phylogenetic analyses; and localized incongruence length difference (LILD) analyses. The algorithm for the LILD analyses localized incongruence by calculating the tree length differences between constrained and unconstrained nodes in a total-evidence tree across all HPV ORFs. The process allows statistical evaluation of every ORF/node pair in the total-evidence tree. The most significant incongruence was observed at the putative high-risk (i.e., cancer-associated) node, the common oncogenic ancestor for alpha HPV species 9 (e.g., HPV type 16 [HPV16]), 11, 7 (e.g., HPV18), 5, and 6. Although these groups share early-gene homology, including high degrees of similarity among E6 and E7, groups 9 and 11 diverge from groups 7, 5, and 6 with respect to L2 and L1. The HPV species groups primarily associated with cervical and anogenital cancers appear to follow two distinct evolutionary paths, one conferred by the early genes and another by the late genes. The incongruence in the genital HPV phylogeny could have occurred from an early recombination event, an ecological niche change, and/or asymmetric genome convergence driven by intense selection. These data indicate that the phylogeny of the oncogenic HPVs is complex and that their evolution may not be monophyletic across all genes.  相似文献   

15.
Phylogenetic regression is frequently used in macroevolutionary studies, and its statistical properties have been thoroughly investigated. By contrast, phylogenetic ANOVA has received relatively less attention, and the conditions leading to incorrect statistical and biological inferences when comparing multivariate phenotypes among groups remain underexplored. Here, we propose a refined method of randomizing residuals in a permutation procedure (RRPP) for evaluating phenotypic differences among groups while conditioning the data on the phylogeny. We show that RRPP displays appropriate statistical properties for both phylogenetic ANOVA and regression models, and for univariate and multivariate datasets. For ANOVA, we find that RRPP exhibits higher statistical power than methods utilizing phylogenetic simulation. Additionally, we investigate how group dispersion across the phylogeny affects inferences, and reveal that highly aggregated groups generate strong and significant correlations with the phylogeny, which reduce statistical power and subsequently affect biological interpretations. We discuss the broader implications of this phylogenetic group aggregation, and its relation to challenges encountered with other comparative methods where one or a few transitions in discrete traits are observed on the phylogeny. Finally, we recommend that phylogenetic comparative studies of continuous trait data use RRPP for assessing the significance of indicator variables as sources of trait variation.  相似文献   

16.
Cyprinidae is the biggest family of freshwater fish, but the phylogenetic relationships among its higher-level taxa are not yet fully resolved. In this study, we used the nuclear recombination activating gene 2 and the mitochondrial 16S ribosomal RNA and cytochrome b genes to reconstruct cyprinid phylogeny. Our aims were to (i) demonstrate the effects of partitioned phylogenetic analyses on phylogeny reconstruction of cyprinid fishes; (ii) provide new insights into the phylogeny of cyprinids. Our study indicated that unpartitioned strategy was optimal for our analyses; partitioned analyses did not provide better-resolved or -supported estimates of cyprinid phylogeny. Bayesian analyses support the following relationships among the major monophyletic groups within Cyprinidae: (Cyprininae, Labeoninae), ((Acheilognathinae, ((Leuciscinae, Tincinae), Gobioninae)), Xenocyprininae). The placement of Danioninae was poorly resolved. Estimates of divergence dates within the family showed that radiation of the major cyprinid groups occurred during the Late Oligocene through the Late Miocene. Our phylogenetic analyses improved our understanding of the evolutionary history of this important fish family.  相似文献   

17.
The Bovini tribe contains domestic and wild cattle‐like species, several of which are cross‐fertile. We present a completely resolved Y‐chromosomal phylogeny, which is better in agreement with autosomal phylogeny, morphological data, cross‐fertility and estimates of divergence times than mitochondrial data. The tree links Bos grunniens (yak) to Bison, so the commonly accepted Bos genus is not monophyletic. Therefore, we advocate the term Poephagus as designation of yak. This work illustrates the resolving power of Y‐chromosomal variation for cladistic studies of closely related species. © The Willi Hennig Society 2008.  相似文献   

18.
The superfamily Gelechioidea (Lepidoptera: Obtectomera) has a high species diversity. It consists of more than 18,400 described species and has a global distribution. Among it, large numbers of species were reported to be economically important to people's production and life. However, relationships among families or subfamilies in Gelechioidea have been exceptionally difficult to resolve using morphology or single gene genealogies. Multiple gene genealogies had been used in the molecular phylogenetic studies on Gelechioidea during the past years, but their phylogenetic relationships remain to be controversial mainly due to their limited taxa sampling relative to such high species diversity. In this paper, 89 ingroup species representing 55 genera are sequenced and added to the data downloaded from GenBank, and six species representing four closely related superfamilies are chosen as outgroup. The molecular phylogeny of Gelechioidea is reconstructed based on the concatenated data set composed of one mitochondrial marker (COI) and seven nuclear markers (CAD, EF-1ɑ, GAPDH, IDH, MDH, RpS5, wingless). The phylogenetic results, taking into consideration of the comparative morphological study, show that the clade of Gelechioidea is strongly supported and separated from other superfamilies, which further proves its monophyly. Five families are newly defined: Autostichidae sensu nov., Depressariidae sensu nov., Peleopodidae sensu nov., Ashinagidae sensu nov. and Epimarptidae sensu nov. Meanwhile, a monophyletic “SSABM” clade considered to be closely related is proposed for the first time, consisting of Stathmopodidae, Scythrididae, Ashinagidae, Blastobasidae and Momphidae. Moreover, geometric morphometric analyses using merged landmark data set from fore and hind wings of 118 representative species are conducted. The phenetic tree shows that the monophyly and phylogenetic relationships correspond with the results of molecular phylogeny largely, which well proves its importance and potential application in both phylogenetic reconstruction and species identification.  相似文献   

19.
Next‐generation sequencing technologies (NGS) allow systematists to amass a wealth of genomic data from non‐model species for phylogenetic resolution at various temporal scales. However, phylogenetic inference for many lineages dominated by non‐model species has not yet benefited from NGS, which can complement Sanger sequencing studies. One such lineage, whose phylogenetic relationships remain uncertain, is the diverse, agriculturally important and charismatic Coreoidea (Hemiptera: Heteroptera). Given the lack of consensus on higher‐level relationships and the importance of a robust phylogeny for evolutionary hypothesis testing, we use a large data set comprised of hundreds of ultraconserved element (UCE) loci to infer the phylogeny of Coreoidea (excluding Stenocephalidae and Hyocephalidae), with emphasis on the families Coreidae and Alydidae. We generated three data sets by including alignments that contained loci sampled for at least 50%, 60%, or 70% of the total taxa, and inferred phylogeny using maximum likelihood and summary coalescent methods. Twenty‐six external morphological features used in relatively comprehensive phylogenetic analyses of coreoids were also re‐evaluated within our molecular phylogenetic framework. We recovered 439–970 loci per species (16%–36% of loci targeted) and combined this with previously generated UCE data for 12 taxa. All data sets, regardless of analytical approach, yielded topologically similar and strongly supported trees, with the exception of outgroup relationships and the position of Hydarinae. We recovered a monophyletic Coreoidea, with Rhopalidae highly supported as the sister group to Alydidae + Coreidae. Neither Alydidae nor Coreidae were monophyletic; the coreid subfamilies Hydarinae and Pseudophloeinae were recovered as more closely related to Alydidae than to other coreid subfamilies. Coreinae were paraphyletic with respect to Meropachyinae. Most morphological traits were homoplastic with several clades defined by few, if any, synapomorphies. Our results demonstrate the utility of phylogenomic approaches in generating robust hypotheses for taxa with long‐standing phylogenetic problems and highlight that novel insights may come from such approaches.  相似文献   

20.
Statistical randomization tests in evolutionary biology often require a set of random, computer-generated trees. For example, earlier studies have shown how large numbers of computer-generated trees can be used to conduct phylogenetic comparative analyses even when the phylogeny is uncertain or unknown. These methods were limited, however, in that (in the absence of molecular sequence or other data) they allowed users to assume that no phylogenetic information was available or that all possible trees were known. Intermediate situations where only a taxonomy or other limited phylogenetic information (e.g., polytomies) are available are technically more difficult. The current study describes a procedure for generating random samples of phylogenies while incorporating limited phylogenetic information (e.g., four taxa belong together in a subclade). The procedure can be used to conduct comparative analyses when the phylogeny is only partially resolved or can be used in other randomization tests in which large numbers of possible phylogenies are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号