首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Peptides serve as important signalling molecules in development and differentiation in the simple metazoan Hydra. A systematic approach (The Hydra Peptide Project) has revealed that Hydra contains several hundreds of peptide signalling molecules, some of which are neuropeptides and others emanate from epithelial cells. These peptides control biological processes as diverse as muscle contraction, neuron differentiation, and the positional value gradient. Signal peptides cause changes in cell behaviour by controlling target genes such as matrix metalloproteases. The abundance of peptides in Hydra raises the question of whether, in early metazoan evolution, cell-cell communication was based mainly on these small molecules rather than on the growth-factor-like cytokines that control differentiation and development in higher animals.  相似文献   

3.
4.
Silencing of developmental genes in Hydra.   总被引:32,自引:0,他引:32  
  相似文献   

5.
Hydra magnipapillata has three distinct genes coding for preprohormones A, B, and C, each yielding a characteristic set of Hydra-RFamide (Arg-Phe-NH2) neuropeptides, and a fourth gene coding for a preprohormone that yields various Hydra-LWamide (Leu-Trp-NH2) neuropeptides. Using a whole-mount double-labeling in situ hybridization technique, we found that each of the four genes is specifically expressed in a different subset of neurons in the ectoderm of adult Hydra. The preprohormone A gene is expressed in neurons of the tentacles, hypostome (a region between tentacles and mouth opening), upper gastric region, and peduncle (an area just above the foot). The preprohormone B gene is exclusively expressed in neurons of the hypostome, whereas the preprohormone C gene is exclusively expressed in neurons of the tentacles. The Hydra-LWamide preprohormone gene is expressed in neurons located in all parts of Hydra with maxima in tentacles, hypostome, and basal disk (foot). Studies on animals regenerating a head showed that the prepro-Hydra-LWamide gene is expressed first, followed by the preprohormone A and subsequently the preprohormone C and the preprohormone B genes. This sequence of events could be explained by a model based on positional values in a morphogen gradient. Our head-regeneration experiments also give support for transient phases of head formation: first tentacle-specific preprohormone C neurons (frequently associated with a small tentacle bud) appear at the center of the regenerating tip, which they are then replaced by hypostome-specific preprohormone B neurons. Thus, the regenerating tip first attains a tentacle-like appearance and only later this tip develops into a hypostome. In a developing bud of Hydra, tentacle-specific preprohormone C neurons and hypostome-specific preprohormone B neurons appear about simultaneously in their correct positions, but during a later phase of head development, additional tentacle-specific preprohormone C neurons appear as a ring at the center of the hypostome and then disappear again. Nerve-free Hydra consisting of only epithelial cells do not express the preprohormone A, B, or C or the LWamide preprohormone genes. These animals, however, have a normal phenotype, showing that the preprohormone A, B, and C and the LWamide genes are not essential for the basic pattern formation of Hydra.  相似文献   

6.
Since the pioneering work of Ethel Browne (1909) who demonstrated for the first time the concept of organizer activity, i.e. the potency of an apical Hydra tissue to induce a secondary axis when transplanted onto a host, Hydra flourished as a fruitful model system for developmental studies. Over the next 60 years this efficient transplantation approach identified graded biological activities along the body column of Hydra named Head Acti-vation and Head Inhibition. These properties inspired theoretical modelers including Lewis Wolpert, Alfred Gierer and Hans Meinhardt to propose models for morphogenesis, respectively the positional information (1969) and reaction-diffusion (1972) models. In 1973, Tsutomu Sugiyama and Toshitaka Fujisawa initiated in Mishima a unique project to analyze the properties of Hydra strains with distinct morphological and developmental characters. To this end, they collected in several areas of Japan multiple Hydra strains that they subsequently characterized and crossed. They also established a lateral transplantation strategy that was much more powerful than the previous ones, as it combined quantitative measurements with cellular analyses thanks to the chimera procedures developed by Campbell and colleagues. In-deed this approach provided a paradigm to quantify in any morphological phenotype the Head Activation and Head Inhibition levels along the body column. In this article, I review the various strains identified by Sugiyama and colleagues, the principles and the main results deduced from the quantitative lateral transplantation strategy. In addition, I briefly discuss the relevance of this approach in the era of molecular biology.  相似文献   

7.
Developmental processes in multicellular animals depend on an array of signal transduction pathways. Studies of model organisms have identified a number of such pathways and dissected them in detail. However, these model organisms are all bilaterians. Investigations of the roles of signal transduction pathways in the early-diverging metazoan Hydra have revealed that a number of the well-known developmental signaling pathways were already in place in the last common ancestor of Hydra and bilaterians. In addition to these shared pathways, it appears that developmental processes in Hydra make use of pathways involving a variety of peptides. Such pathways have not yet been identified as developmental regulators in more recently diverged animals. In this review I will summarize work to date on developmental signaling pathways in Hydra and discuss the future directions in which such work will need to proceed to realize the potential that lies in this simple animal.  相似文献   

8.
9.
10.
The timing of when the embryonic left−right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis prior to the appearance of, or without the benefit of, motile cilia. Because of the large amount of data available in the published literature and the similarities in the type of data collected across laboratories, I have examined relationships between the studies that do and do not implicate cilia, the choice of animal model, the kinds of LR patterning defects observed, and the penetrance of LR phenotypes. I found that treatments affecting cilia structure and motility had a higher penetrance for both altered gene expression and improper organ placement compared to treatments that affect processes in early cleavage stage embryos. I also found differences in penetrance that could be attributed to the animal models used; the mouse is highly prone to LR randomization. Additionally, the data were examined to address whether gene expression can be used to predict randomized organ placement. Using regression analysis, gene expression was found to be predictive of organ placement in frogs, but much less so in the other animals examined. Together, these results challenge previous ideas about the conservation of LR mechanisms, with the mouse model being significantly different from fish, frogs, and chick in almost every aspect examined. Additionally, this analysis indicates that there may be missing pieces in the molecular pathways that dictate how genetic information becomes organ positional information in vertebrates; these gaps will be important for future studies to identify, as LR asymmetry is not only a fundamentally fascinating aspect of development but also of considerable biomedical importance.  相似文献   

11.
12.
13.
The applicability of flow cytometry (FCM) to analyse cell-cycle distribution and mitotic cells in Hydra oligactis and Hydra vulgaris is demonstrated. The freshwater polyps H. vulgaris and H. oligactis are well-accepted animal models for studying cell proliferation, regeneration and differentiation. Disintegrated animals were labelled for FCM analysis according to the method of Nuesse et al. [(1990) Flow cytometric analysis of G(1) and G(2)/M-phase subpopulations in mammalian cell nuclei using side scatter and DNA content measurements. Cytometry 11, 813]. Proliferation and regeneration experiments, in the absence or presence of the oligopeptide head activator, were quantified. Cell-cycle analysis of different parts of the animals shows low proliferation in the head region and high proliferation in the gastric and foot regions. Cell-cycle analysis of different parts of Hydra, comparison of H. oligactis and H. vulgaris, as well as pharmacological treatment, yielded results that are in agreement with prior microscopic analysis. Our results demonstrate that FCM is an appropriate technique for quantifying proliferation in this animal model. It can be used for basic research on development, regeneration and differentiation as well as for innovative drug investigation and toxicology studies.  相似文献   

14.
D A Fisher  H R Bode 《Gene》1989,84(1):55-64
We have determined the complete nucleotide sequence of an actin-encoding gene from Hydra attenuata as well as partial sequences of cDNA clones from two additional actin-encoding genes. The gene from the genomic clone contains a single intron, and has promoter and polyadenylation signals similar to those found in other species. The hydra genome has a very A + T-rich base composition (71%). This is reflected in the codon usage of the actin-encoding genes, which is strongly biased towards codons having A or T in the third position. The hydra actin-encoding gene family consists of three or more transcribed genes, two of which are very closely related to each other and probably arose by a recent gene duplication. Hydra actin, like other invertebrate actins, is more similar to the non-muscle isotypes of vertebrates than to the vertebrate muscle actins. Hydra actin is more similar to animal actins than to those of plants or fungi, which is consistent with the view that all metazoans arose from a single protist ancestor.  相似文献   

15.
SUMMARY Similarities in genetic control between the main body axis and its appendages have been generally explained in terms of genetic co-option. In particular, arthropod and vertebrate appendages have been explained to invoke a common ancestor already provided with patterned body outgrowths or independent recruitment in limb patterning of genes or genetic cassettes originally used for purposes other than axis patterning. An alternative explanation is that body appendages, including genitalia, are evolutionarily divergent duplicates (paramorphs) of the main body axis. However, are all metazoan limbs and genitalia homologous? The concept of body appendages as paramorphs of the main body axis eliminates the requirement for the last common ancestor of limb-bearing animals to have been provided with limbs. Moreover, the possibility for an animal to express complex organs ectopically demonstrates that positional and special homology may be ontogenetically and evolutionarily uncoupled. To assess the homology of animal genitalia, we need to take into account three different sets of mechanisms, all contributing to their positional and/or special homology and respectively involved (1) in the patterning of the main body axis, (2) in axis duplication, followed by limb patterning mechanisms diverging away from those still patterning the main body axis (axis paramorphism), and (3) in controlling the specification of sexual/genital features, which often, but not necessarily, come into play by modifying already developed and patterned body appendages. This analysis demonstrates that a combinatorial approach to homology helps disentangling phylogenetic and ontogenetic layers of homology.  相似文献   

16.
The Cnidarian, hydra, is an appealing model system for studying the basic processes underlying pattern formation. Classical studies have elucidated much basic information regarding the role of development gradients, and theoretical models have been quite successful at describing experimental results. However, most experiments and computer simulations have dealt with isolated patterning events such as the dynamics of head regeneration. More global events such as interactions among the head, bud, and foot patterning systems have not been extensively addressed. The characterization of monoclonal antibodies with position-specific labeling patterns and the recent cloning and characterization of genes expressed in position-specific manners now provide the tools for investigating global interactions between patterning systems. In particular, changes in the axial positional value gradient may be monitored in response to experimental perturbation. Rather than studying isolated patterning events, this approach allows us to study patterning over the entire animal. The studies reported here focus on interactions between the foot and the head patterning systems in Hydra vulgaris following induction of a foot in close proximity to a head, axial grafting of a foot closer to the head, or doubling the amount of basal tissue by lateral grafting of an additional peduncle-foot onto host animals. Resulting positional value changes as monitored by antigen (TS19) and gene (ks1 and CnNK-2) expression were assessed in the foot, head, and intervening tissue. The results of the experiments indicate that positional values changed rapidly, in a matter of hours, and that there were reciprocal interactions between the foot and the head patterning systems. Theoretical interpretations of the results in the form of computer simulations based on the reaction-diffusion model are presented and predict many, but not all, of the experimental observations. Since the lateral grafting experiment cannot, at present, be simulated, it is discussed in light of what has been learned from the axial grafting experiments and their simulations.  相似文献   

17.
Planarians have a remarkable regenerative ability owing to their adult pluripotent stem cells (aPSCs), which are called “neoblasts.” Planarians maintain a considerable number of neoblasts throughout their adulthood to supply differentiated cells for the maintenance of tissue homeostasis and asexual reproduction (fission followed by regeneration). Thus, planarians serve as a good model to study the regulatory mechanisms of in vivo aPSCs. In asexually reproducing invertebrates, such as sponge, Hydra, and planaria, piwi family genes are the markers most commonly expressed in aPSCs. While piwi family genes are known as guardians against transposable elements in the germline cells of animals that only sexually propagate, their functions in the aPSC system have remained elusive. In this review, we introduce recent knowledge on the PIWI family proteins in the aPSC system in planarians and other organisms and discuss how PIWI family proteins contribute to the regulation of the aPSC system.  相似文献   

18.
Steele RE  Stover NA  Sakaguchi M 《Gene》1999,239(1):91-97
Syk family protein-tyrosine kinases are essential components of immunoreceptor signaling in mammalian lymphocytes. The absence of Syk genes from the Caenorhabditis elegans genome suggests that this kinase family is of recent evolutionary origin. Surprisingly, we have found that Hydra vulgaris, a member of the early diverging animal phylum Cnidaria, contains a gene encoding a Syk kinase. Phylogenetic analysis indicates that a single Syk family gene was present in animals prior to the gene duplication that gave rise to Syk and ZAP-70, the two mammalian Syk family genes. C. elegans also lacks a Shark protein-tyrosine kinase gene, which we show is a member of a sister group to the Syk family. We conclude that both Syk and Shark genes were lost from the genome of an ancestor of C. elegans. This natural gene knockout result indicates that neither Syk nor Shark kinases are essential for processes held in common between the nematode and other metazoans. The Hydra Syk gene is expressed in epithelial cells, a site consistent with a role for Hydra Syk in recognition of foreign cells.  相似文献   

19.
20.
The Caenorhabditis elegans body axis, like that of other animals, is patterned by the action of Hox genes. In order to examine the function of one C. elegans Hox gene in depth, we determined the postembryonic expression pattern of egl-5, the C. elegans member of the Abdominal-B Hox gene paralog group, by means of whole-mount staining with a polyclonal antibody. A major site of egl-5 expression and function is in the epithelium joining the posterior digestive tract with the external epidermis. Patterning this region and its derived structures is a conserved function of Abd-B paralog group genes in other animals. Cells that initiate egl-5 expression during embryogenesis are clustered around the presumptive anus. Expression is initiated postembryonically in four additional mesodermal and ectodermal cell lineages or tissues. Once initiated in a lineage, egl-5 expression continues throughout development, suggesting that the action of egl-5 can be regarded as defining a positional cell identity. A variety of cross-regulatory interactions between egl-5 and the next more anterior Hox gene, mab-5, help define the expression domains of their respective gene products. In its expression in a localized body region, function as a marker of positional cell identity, and interactions with another Hox gene, egl-5 resembles Hox genes of other animals. This suggests that C. elegans, in spite of its small cell number and reproducible cell lineages, may not differ greatly from other animals in the way it employs Hox genes for regional specification during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号