首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly of phage phi 29 occurs by a single pathway, and the DNA protein (DNA-gp3) of "packaging intermediates" can be obtained after DNase I interruption of in vitro complementation. A broad spectrum of DNA molecules of variable length was isolated from DNase I-treated proheads. Restriction endonuclease EcoRI digestion and electrophoretic analysis of these DNA molecules suggested that DNA-gp3 packaging was oriented with respect to the physical map and was a complex process. Proteinase K-treated exogenous DNA was not packaged. When exogenous DNA-gp3 was predigested with the restriction endonucleases BstEII. EcoRI, HpaI, and HpaII, the left-end fragments, ranging in size from 8 to 0.9 megadaltons, were selectively and efficiently packaged. During in vivo and in vitro assembly, DNA-gp3 is packaged into proheads, the "core-scaffolding" protein gp7 exits from the particles, and the DNA-filled heads assume the angular morphology of phage phi 29. The packaging of a 4.1-megadalton DNA-gp3 left-end fragment (one third of the genome) resulted in the exit of gp7 and the transition to angularity.  相似文献   

2.
A small RNA (pRNA, 174 nt) is known to be essential for DNA packaging in bacteriophage phi 29. However, in an in vitro DNA packaging system based on hybrid lambda/phi 29 proheads (made up of head proteins from phage lambda and connectors from phage phi 29), the specificity of DNA packaging is lost, and different RNA molecules fulfil the requirements for DNA packaging, albeit with less efficiency than phi 29 pRNA. Competition assays with RNAs from different sources have shown that phi 29 connectors bind preferentially pRNA. An increase in the efficiency of phi 29 DNA packaging into hybrid proheads induced by phi 29 pRNA is observed because, when phi 29 pRNA is incubated with hybrid proheads, phi 29 DNA is packaged more efficiently than other DNAs of similar length. Furthermore, when hybrid proheads carrying phi 29 pRNA are incubated with a mixture of DNAs from different sources, phi 29 DNA is selectively packaged, thus indicating that phi 29 pRNA determines the specificity of DNA packaging.  相似文献   

3.
Molecular motors drive genome packaging into preformed procapsids in many double-stranded (ds)DNA viruses. Here, we present optical tweezers measurements of single DNA molecule packaging in bacteriophage lambda. DNA-gpA-gpNu1 complexes were assembled with recombinant gpA and gpNu1 proteins and tethered to microspheres, and procapsids were attached to separate microspheres. DNA binding and initiation of packaging were observed within a few seconds of bringing these microspheres into proximity in the presence of ATP. The motor was observed to generate greater than 50 picoNewtons (pN) of force, in the same range as observed with bacteriophage phi29, suggesting that high force generation is a common property of viral packaging motors. However, at low capsid filling the packaging rate averaged approximately 600 bp/s, which is 3.5-fold higher than phi29, and the motor processivity was also threefold higher, with less than one slip per genome length translocated. The packaging rate slowed significantly with increasing capsid filling, indicating a buildup of internal force reaching 14 pN at 86% packaging, in good agreement with the force driving DNA ejection measured in osmotic pressure experiments and calculated theoretically. Taken together, these experiments show that the internal force that builds during packaging is largely available to drive subsequent DNA ejection. In addition, we observed an 80 bp/s dip in the average packaging rate at 30% packaging, suggesting that procapsid expansion occurs at this point following the buildup of an average of 4 pN of internal force. In experiments with a DNA construct longer than the wild-type genome, a sudden acceleration in packaging rate was observed above 90% packaging, and much greater than 100% of the genome length was translocated, suggesting that internal force can rupture the immature procapsid, which lacks an accessory protein (gpD).  相似文献   

4.
PRD1 is the type virus of the Tectiviridae family. Its linear double-stranded DNA genome has covalently attached terminal proteins and is surrounded by a membrane, which is further enclosed within an icosahedral protein capsid. Similar to tailed bacteriophages, PRD1 packages its DNA into a preformed procapsid. The PRD1 putative packaging ATPase P9 is a structural protein located at a unique vertex of the capsid. An in vitro system for packaging DNA into preformed empty procapsids was developed. The system uses cell extracts of overexpressed P9 protein and empty procapsids from a P9-deficient mutant virus infection and PRD1 DNA containing a LacZalpha-insert. The in vitro packaged virions produce distinctly blue plaques when plated on a suitable host. This is the first time that a viral genome is packaged in vitro into a membrane vesicle. Comparison of PRD1 P9 with putative packaging ATPase sequences from bacterial, archaeal and eukaryotic viruses revealed a new packaging ATPase-specific motif. Surprisingly the viruses having this packaging ATPase motif, and thus considered to be related, were the same as those recently grouped together using the coat protein fold and virion architecture. Our finding here strongly supports the idea that all these viruses infecting hosts in all domains of life had a common ancestor.  相似文献   

5.
The bacteriophage phi29 DNA packaging motor is a protein/RNA complex that can produce strong force to condense the linear-double-stranded DNA genome into a pre-formed protein capsid. The RNA component, called the packaging RNA (pRNA), utilizes magnesium-dependent inter-molecular base-pairing interactions to form ring-shaped complexes. The pRNA is a class of non-coding RNA, interacting with phi29 motor proteins to enable DNA packaging. Here, we report a two-piece chimeric pRNA construct that is fully competent in interacting with partner pRNA to form ring-shaped complexes, in packaging DNA via the motor, and in assembling infectious phi29 virions in vitro. This is the first example of a fully functional pRNA assembled using two non-covalently interacting fragments. The results support the notion of modular pRNA architecture in the phi29 packaging motor.  相似文献   

6.
We characterize the equilibrium thermodynamics of a thick polymer confined in a spherical region of space. This is used to gain insight into the DNA packaging process. The experimental reference system for the present study is the recent characterization of the loading process of the genome inside the phi29 bacteriophage capsid. Our emphasis is on the modelling of double-stranded DNA as a flexible thick polymer (tube) instead of a beads-and-springs chain. By using finite-size scaling to extrapolate our results to genome lengths appropriate for phi29, we find that the thickness-induced force may account for up to half the one measured experimentally at high packing densities. An analogous agreement is found for the total work that has to be spent in the packaging process. Remarkably, such agreement can be obtained in the absence of any tunable parameters and is a mere consequence of the DNA thickness. Furthermore, we provide a quantitative estimate of how the persistence length of a polymer depends on its thickness. The expression accounts for the significant difference in the persistence lengths of single and double-stranded DNA (again with the sole input of their respective sections and natural nucleotide/base-pair spacing).  相似文献   

7.
The assembly of phage phi 29 occurs by a single pathway, and DNA-protein (DNA-gp3) has been shown to be an intermediate on the assembly pathway by a highly efficient in vitro complementation. At 30 degrees C, about one-half of the viral DNA synthesized was assembled into mature phage, and the absolute plating efficiency of phi 29 approached unity. DNA packaging at 45 degrees C was comparable to that at 30 degrees C, but the burst size was reduced by one-third. When cells infected with mutant ts3(132) at 30 degrees C to permit DNA synthesis were shifted to 45 degrees C before phage assembly, DNA synthesis ceased and no phage were produced. However, a variable amount of DNA packaging occurred. Superinfection by wild-type phage reinitiated ts3(132) DNA synthesis at 45 degrees C, and if native gp3 was covalently linked to this DNA during superinfection replication, it was effectively packaged and assembled. Treatment of the DNA-gp3 complex with trypsin prevented in vitro maturation of phi 29, although substantial DNA packaging occurred. A functional gp3 linked to the 5' termini of phi 29 DNA is a requirement for effective phage assembly in vivo and in vitro.  相似文献   

8.
9.
The prohead connector of the bacteriophage luminal diameter 29 DNA packaging machine was reconstructed with the small RNA that regulates DNA packaging in vitro. The complete sequence of the 120 nucleotide RNA proved its origination from the promoter PE1(A1) of the left early region of phi 29 DNA, the end packaged first during assembly. The prohead RNA was clearly distinct from eubacterial 5S rRNA in sequence and composition.  相似文献   

10.
In vivo, endonuclease II (EndoII) of coliphage T4 cleaves sites with conserved sequence elements (CSEs) to both the left and the right of the cleaved bonds, 16 bp altogether with some variability tolerated. In vitro, however, single-strand nicks in the lower strand predominate at sites containing only the left-side CSE that determines the precise position of lower strand nicks. Upper strand nick positions vary both in vivo and in vitro. A 24 bp substrate was nicked with the same precision as in longer substrates, showing that the conserved sequence suffices for precise nicking by EndoII. Using DNA ligase in vitro, we found that EndoII nicked both strands simultaneously at an in vivo-favoured site but not at an in vitro-favoured site. This indicates that the right-side CSE at in vivo-favoured sites is important for simultaneous nicking of both strands, generating double-strand cleavage. Separate analysis of the two strands following in vitro digestion at two in vitro-favoured sites showed that EndoII nicked the lower strand about 1.5-fold faster than the upper strand. In addition, the upper and lower strands were nicked independently of each other, seldom resulting in double-strand cleavage. Thus, cleavage by EndoII is the fortuitous outcome of two separate nicking events.  相似文献   

11.
C Chen  P Guo 《Journal of virology》1997,71(1):495-500
Bacteriophage phi29 is typical of double-stranded DNA viruses in that its genome is packaged into a preformed procapsid during maturation. An intriguing feature of phi29 assembly is that a virus-encoded RNA (pRNA) is required for the packaging of its genomic DNA. Psoralen cross-linking, primer extension, and T1 RNase partial digestion revealed that pRNA had at least two conformations; one was able to bind procapsids, and the other was not. In the presence of Mg2+, one stretch of pRNA, consisting of bases 31 to 35, was confirmed to be proximal to base 69, as revealed by its efficient cross-linking by psoralen. Two cross-linking sites in the helical region were identified. Mg2+ induced a conformational change of pRNA that exposes the portal protein binding site by promoting the refolding of two strands of the procapsid binding region, resulting in the formation of pRNA-procapsid complexes. The procapsid binding region in this binding-competent conformation could not be cross-linked with psoralen. When the two strands of the procapsid binding region were fastened by cross-linking, pRNA could neither bind procapsids nor package phi29 DNA. A pRNA conformational change was also discernible by comparison of migration rates in native EDTA and Mg2+ polyacrylamide gel electrophoresis and was revealed by T1 RNase probing. The Mg2+ concentration required for the detection of a change in pRNA cross-linking patterns was 1 mM, which was the same as that required for pRNA-procapsid complex formation and DNA packaging and was also close to that in normal host cells.  相似文献   

12.
Unusual base sequence arrangement in phage phi 29 DNA.   总被引:9,自引:0,他引:9  
J Ito  R J Roberts 《Gene》1979,5(1):1-7
Susceptibility of Bacillus subtilis phage phi 29 DNA to 34 different restriction endoculceases was determined. Three enzymes, BglI, XbaI and BstEII, were found to cleave phi 29 DNA only once at specific sites. The sites of these single cleavages have been mapped. Thirteen enzymes did not cut phi 29 DNA. phi 29 HindIII DNA fragments inserted into pBR313 plasmid and propagated in Escherichia coli, were resistant to these restriction endonucleases. This result suggests that the insusceptibility is due to the absence of the nucleotide sequences on phi 29 recognized by the enzymes, and not to the presence of modified nucleotides.  相似文献   

13.
This laboratory has recently reported the occurrence of DNA nicking at the onset of terminal skeletal myogenesis by using the technique of in situ nick translation (Dawson and Lough: Dev. Biol., 127:362-367, 1988). Because 1-beta-D-arabinofuranosylcytosine (araC), a cytocidal agent that is routinely used to removed dividing fibroblasts from myogenic cultures, inhibits DNA repair, it was of interest to determine whether araC treatment resulted in an accumulation of the endogenously created nicks. Thus, we have assessed the accumulation of DNA nicks in myotube cells during a 20 hour araC treatment period at the onset of terminal myogenesis (44-64 hours in vitro) by using three techniques: alkaline sucrose gradient density centrifugation, kinetic in situ nick translation, and cellular in situ nick translation. Although alkaline sucrose gradient centrifugation revealed no detectable nicking after 20 hours, kinetic in situ nick translation analysis revealed subtle but significant increases in DNA nicks caused by araC within 7 hours of drug application, and a 1.5-fold increase in DNA repair sites after 20 hours of drug treatment. That these observations reflected nicking specifically in myotube nuclei was determined by immunocytochemical localization of nicked sites after repair with a biotinylated nucleotide analog (biotin-11-dUTP). The effects of araC were only incompletely reversible, whether or not the drug was removed from the cultures, within 2 days of the treatment period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
O Niwa  R E Moses 《Biochemistry》1981,20(2):238-244
phi X174 RFI DNA treated with bleomycin (BLM) under conditions permitting nicking does not serve as a template-primer for Escherichia coli DNA polymerase I. Purified exonuclease III from E. coli and extracts from wild-type E. coli strains are able to convert the BLM-treated DNA to suitable template-primer, but extracts from exonuclease III deficient strains are not. Brief digestion by exonuclease III is enough to create the template-primer, suggesting that the exonuclease III is converting the BLM-treated DNA by a modification of 3' termini. The exonucleolytic rather than the phosphatase activity of exonuclease III appears to be involved in the conversion. Comparative studies with micrococcal nuclease indicate that BLM-created nicks do not have a simple 3'-P structure. Bacterial alkaline phosphatase does not convert BLM-treated DNA to template-primer. The endonuclease VI activity associated with exonuclease III does not incise DNA treated with BLM under conditions not allowing nicking, in contrast to DNA with apurinic sites made by acid treatment, arguing that conversion does not require the endonuclease VI action on uncleaved sites.  相似文献   

15.
细菌病毒phi29DNA—装运泵六聚体RNA结构和功能的研究方法   总被引:1,自引:0,他引:1  
在双链DNA病毒增殖和成熟的过程中 ,需要将相当长的子代DNA装入一个极为有限空间的新生病毒衣壳。整个核酸装壳过程是耗能的过程 ,必需依靠生物泵来将DNA推入壳中。在细菌病毒phi2 9的核酸装壳过程中 ,需要RNA分子作为此生物泵的重要构成组分。6个RNA分子构成一个六边形样螺帽 ,将DNA如螺栓般装入病毒衣壳。6个RNA的这种依次运动的轮流作用模型如同汽车发动机的 6个气缸依次起火的原理一样 ,只是能源来自ATP而不是汽油。综述了此RNA的结构 ,及其结构对其功能所起的重要作用 ,并着重阐述研究 pRNA结构的独特构思和方法  相似文献   

16.
During the assembly of many viruses, a powerful molecular motor compacts the genome into a preassembled capsid. Here, we present measurements of viral DNA packaging in bacteriophage phi29 using an improved optical tweezers method that allows DNA translocation to be measured from initiation to completion. This method allowed us to study the previously uncharacterized early stages of packaging and facilitated more accurate measurement of the length of DNA packaged. We measured the motor velocity versus load at near-zero filling and developed a ramped DNA stretching technique that allowed us to measure the velocity versus capsid filling at near-zero load. These measurements reveal that the motor can generate significantly higher velocities and forces than detected previously. Toward the end of packaging, the internal force resisting DNA confinement rises steeply, consistent with the trend predicted by many theoretical models. However, the force rises to a higher magnitude, particularly during the early stages of packaging, than predicted by models that assume coaxial inverse spooling of the DNA. This finding suggests that the DNA is not arranged in that conformation during the early stages of packaging and indicates that internal force is available to drive complete genome ejection in vitro. The maximum force exceeds 100 pN, which is about one-half that predicted to rupture the capsid shell.  相似文献   

17.
Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.  相似文献   

18.
The packaging RNA (pRNA) found in phi29 bacteriophage is an essential component of a molecular motor that packages the phage''s DNA genome. The pRNA forms higher-order multimers by intermolecular “kissing” interactions between identical molecules. The phi29 pRNA is a proven building block for nanotechnology and a model to explore the rare phenomenon of naturally occurring RNA self-association. Although the self-association properties of the phi29 pRNA have been extensively studied and this pRNA is used in nanotechnology, the characteristics of phylogenetically related pRNAs with divergent sequences are comparatively underexplored. These diverse pRNAs may lend new insight into both the rules governing RNA self-association and for RNA engineering. Therefore, we used a combination of biochemical and biophysical methods to resolve ambiguities in the proposed secondary structures of pRNAs from M2, GA1, SF5, and B103 phage, and to discover that different naturally occurring pRNAs form multimers of different stoichiometry and thermostability. Indeed, the M2 pRNA formed multimers that were particularly thermostable and may be more useful than phi29 pRNA for many applications. To determine if diverse pRNA behaviors are conferred by different kissing loop sequences, we designed and tested chimeric RNAs based on our revised secondary structural models. We found that although the kissing loops are essential for self-association, the critical determinant of multimer stability and stoichiometry is likely the diverse three-way junctions found in these RNAs. Using known features of RNA three-way junctions and solved structures of phi29 pRNA''s junction, we propose a model for how different junctions affect self-association.  相似文献   

19.
One striking feature in the assembly of linear double-stranded (ds) DNA viruses is that their genome is translocated into a preformed protein coat via a motor involving two non-structural components with certain characteristics of ATPase. In bacterial virus phi29, these two components include the protein gp16 and a packaging RNA (pRNA). The structure and function of other phi29 motor components have been well elucidated; however, studies on the role of gp16 have been seriously hampered by its hydrophobicity and self-aggregation. Such problems caused by insolubility also occur in the study of other viral DNA-packaging motors. Contradictory data have been published regarding the role and stoichiometry of gp16, which has been reported to bind every motor component, including pRNA, DNA, gp3, DNA-gp3, connector, pRNA-free procapsid, and procapsid/pRNA complex. Such conflicting data from a binding assay could be due to the self-aggregation of gp16. Our recent advance to produce soluble and highly active gp16 has enabled further studies on gp16. It was demonstrated in this report that gp16 bound to DNA non-specifically. gp16 bound to the pRNA-containing procapsid much more strongly than to the pRNA-free procapsid. The domain of pRNA for gp16 interaction was the 5'/3' paired helical region. The C18C19A20 bulge that is essential for DNA packaging was found to be dispensable for gp16 binding. This result confirms the published model that pRNA binds to the procapsid with its central domain and extends its 5'/3' DNA-packaging domain for gp16 binding. It suggests that gp16 serves as a linkage between pRNA and DNA, and as an essential DNA-contacting component during DNA translocation. The data also imply that, with the exception of the C18C19A20 bulge, the main role of the 5'/3' helical double-stranded region of pRNA is not for procapsid binding but for binding to gp16.  相似文献   

20.
DNA packaging by large DNA viruses such as the tailed bacteriophages and the herpesviruses involves DNA translocation into a preformed protein shell, called the prohead. Translocation is driven by an ATP hydrolysis-powered DNA packaging motor. The bacteriophages encode a heterodimeric viral DNA packaging protein, called terminase. The terminases have an ATPase center located in the N terminus of the large subunit implicated in DNA translocation. In previous work with phage lambda, lethal mutations that changed ATP-reactive residues 46 and 84 of gpA, the large terminase subunit, were studied. These mutant enzymes retained the terminase endonuclease and helicase activities, but had severe defects in virion assembly, and lacked the terminase high-affinity ATPase activity. Surprisingly, in the work described here, we found that enzymes with the conservative gpA changes Y46F and Y46A had only mild packaging defects. These mild defects contrast with their profound virion assembly defects. Thus, these mutant enzymes have, in addition to the mild DNA packaging defects, a severe post-DNA packaging defect. In contrast, the gpA K84A enzyme had similar virion assembly and DNA packaging defects. The DNA packaging energy budget, i.e. DNA packaged/ATP hydrolyzed, was unchanged for the mutant enzymes, indicating that DNA translocation is tightly coupled to ATP hydrolysis. A model is proposed in which gpA residues 46 and 84 are important for terminase's high-affinity ATPase activity. Assembly of the translocation complex remodels this ATPase so that residues 46 and 84 are not crucial for the activated translocation ATPase. Changing gpA residues 46 and 84 primarily affects assembly, rather than the activity, of the translocation complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号