首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阴离子交换晶胶层析分离质粒DNA   总被引:1,自引:0,他引:1  
质粒DNA(pDNA)作为重要的基因治疗药物载体,其广泛应用受纯度和产量的限制。为了获得高纯度的pDNA,首先制备超大孔连续床晶胶基质,接枝二乙氨基乙基葡聚糖得到阴离子交换型晶胶介质;然后以pUC19质粒为例,将目标质粒转化至大肠杆菌,培养收集,碱液裂解和离心;最后用阴离子交换型晶胶介质从离心上清液中一步法层析分离pDNA。通过优化层析过程的pH值和洗脱条件,最终在pH值为6.6时,用0.5 mol/L的NaCl溶液洗脱,得到较高纯度的pDNA。整个分离过程中不使用动物源性酶,也不需常规分离中的高毒试剂,使获得pDNA的过程和产物更加安全。  相似文献   

2.
A novel downstream bioprocess was developed to obtain purified plasmid DNA (pDNA) from Escherichia coli ferments. The intermediate recovery and purification of the pDNA in cell lysate was conducted using hollow-fiber tangential filtration and frontal anion-exchange membrane and elution hydrophobic chromatographies. The purity of the solutions of pDNA obtained during each process stage was investigated. The results show that the pDNA solution purity increased 30-fold and more than 99% of RNA in the lysate was removed during the process operations. The combination of membrane operations and hydrophobic interaction chromatography resulted in an efficient way to recover pDNA from cell lysates. A better understanding of membrane-based technology for the purification of pDNA from clarified E. coli lysate was developed in this research.  相似文献   

3.
Li H  Bo H  Wang J  Shao H  Huang S 《Cytotechnology》2011,63(1):7-12
To establish a cost-effective purification process for the large-scale production of plasmid DNA for gene therapy and DNA vaccination, a single anion-exchange chromatography (AEC) step was employed to purify supercoiled plasmid DNA (sc pDNA) from other isoforms and Escherichia coli impurities present in a clarified lysate. Two different size and conformation plasmids were used as model targets, and showed similar elution behavior in this chromatographic operation, in which sc pDNA was effectively separated from open circle plasmid DNA (oc pDNA) in a salt gradient. The process delivered high-purity pDNA of homogeneity of 95 ± 1.1% and almost undetectable levels of endotoxins, genomic DNA, RNA and protein, at a yield of 65 ± 8%. Furthermore, the transfection efficiency (29 ± 0.4%) was significantly higher than that (20 ± 0.1%) of a pDNA control. The present study confirms the possibility of using a single AEC step to purify sc pDNA from other isoforms and host contaminants present in a clarified E. coli lysate.  相似文献   

4.
Abstract

Gene therapy and DNA vaccination are clinical fields gradually emerging in the last few decades, in particular after the discovery of some gene-related diseases. The increased relevance of biomedical applications of plasmid DNA (pDNA) to induce therapeutic effects has had a great impact on biopharmaceutical research and industry. Although there are several steps involved in the pDNA manufacturing process, the several unit operations must be designed and integrated into a global process. After the plasmid has been designed according to the requirements for clinical administeration to humans, it is biosynthesised mainly by an E. coli host. The overriding priority of the production process is to improve plasmid quantity - the production conditions need to be optimised to guarantee pDNA stability and biological activity.

The complexity and diversity of biomolecules present on the pDNA-containing extracts represent the main concern and limitation to achieve pure and biologically active pDNA. There has been a recent intenstification of the improvement of existing purification procedures or the establishment of novel schemes for plasmid purification.

In spite of the efficacy to purify sc pDNA, these matrices present relatively low binding capacities. Hence, the application of large pore matrices in order to further increase capacity and open the way to process scale applications could be a great advantage for affinity chromatography.  相似文献   

5.
Anion-exchange is the most popular chromatography technique in plasmid DNA purification. However, poor resolution of plasmid DNA from RNA often results in the addition of bovine-derived ribonuclease (RNase) A to degrade RNA impurities which raises regulatory concerns for the production of pharmaceutical-grade plasmid DNA. Low capacity for plasmid of most commercial media is another issue affecting the suitability of anion-exchange chromatography for large-scale processing. This study reports the use of anion-exchange chromatography to remove RNA in an RNase-free plasmid purification process. Resolution was achieved through careful selection of adsorbent and operating conditions as well as RNA reduction steps before chromatography. Dynamic capacity for plasmid was significantly increased (to 3.0mg/ml) so that it is now possible to envisage the large-scale manufacturing of therapeutic-grade plasmid DNA in the absence of added RNase using anion-exchange chromatography as a polishing step.  相似文献   

6.
Use of plasmid DNA (pDNA) in the emerging gene therapy requires pure DNA in large quantities requiring production of safe DNA on large scale. While a number of kit-based DNA purification techniques have become popular, large scale cost effective purification of DNA remains a technological challenge. Most traditional, as well as newly developed methods for DNA purification are expensive, tedious, use toxic reagents, and/or generally not amenable for scaled up production. Our attempts to develop a scalable adsorptive separation technology resulted in successful use of indigenously developed rigid cross-linked cellulose beads for single step purification of pDNA from alkaline cell lysates. This mode of purification employs a combination of intra-particle interactions that could give a product plasmid DNA free from chromosomal DNA, RNA and host proteins in a single scalable chromatographic step. The technology can be employed as a batch adsorption step on small scale, or on a large scale column chromatography. A high copy number 9.8 kb plasmid (from an Escherichia coli strain) was purified in yields of 77 and 52%, respectively in batch and column modes. The product obtained was homogeneous supercoiled plasmid with no RNA and protein contamination confirmed by quantitative analysis, agarose gel electrophoresis and SDS-PAGE.  相似文献   

7.
The demand for efficient production methods of plasmid DNA (pDNA) has increased vastly in response to rapid advances in the use of pDNA in gene therapy and in vaccines since the advantageous safety concerns associated with non-viral over viral vectors.A prerequisite for the success of plasmid-based therapies is the development of cost-effective and generic production processes of pDNA. However, to satisfy strict regulatory guidelines, the material must be available as highly purified, homogeneous preparations of supercoiled circular covalently closed (ccc) pDNA. Large-scale production of pDNA for therapeutic use is a relatively new field in bioprocessing. The shift from small-scale plasmid production for cell transfection to large-scale production sets new constraints on the bacterial fermentation, processing of bacterial lysate and final purification and formulation of the plasmid DNA. The choice of bacterial strain used for plasmid cultivation affects the plasmid yield, the proportion of different isoforms and the amount of endotoxins in the starting material. The choice of bacterial strain will be greatly influenced by the production and purification procedures of pDNA. Master and working cell banks need to be characterised and established. Alkaline lysis of the bacteria damages the pDNA, resulting in a reduced recovery of ccc pDNA and an increase in partially denaturated ccc pDNA and open circular (oc) forms. Shear stress in these processes needs to be tightly controlled, and buffer composition and pH need to be optimised. To obtain a homogeneous plasmid DNA preparation, different pDNA purification strategies aim at capturing ccc pDNA and eliminating the oc isoform. A highly purified final product corresponding to the stringent recommendations set forth by health and regulatory authorities can be achieved by (i). different chromatography techniques integrated with ultra/diafiltration to achieve optimal purification results; (ii). the formulation of the final pDNA product, that requires a detailed study of the plasmid structure; and (iii). the development of sensitive analytical methods to detect different impurities (proteins, RNA, chromosomal DNA, and endotoxins). We present here a revue of the whole process to obtain such a plasmid DNA, and report an example of RNAse-free purification of ccc pDNA that could be used for gene therapy.  相似文献   

8.
A new bioprocess using mainly membrane operations to obtain purified plasmid DNA from Escherechia coli ferments was developed. The intermediate recovery and purification of the plasmid DNA in cell lysate was conducted using hollow-fiber tangential filtration and tandem anion-exchange membrane chromatography. The purity of the solutions of plasmid DNA obtained during each process stage was investigated. The results show that more than 97% of RNA in the lysate was removed during the process operations and that the plasmid DNA solution purity increased 28-fold. One of the main characteristics of the developed process is to avoid the use of large quantities of precipitating agents such as salts or alcohols. A better understanding of membrane-based technology for the purification of plasmid DNA from clarified E. coli lysate was developed in this research. The convenience of anion-exchange membranes, configured in ready-to-use devices can further simplify large-scale plasmid purification strategies.  相似文献   

9.
Small molecules, like some antibiotics and anticancer agents that bind DNA with high specificity, can represent a relevant alternative as ligands in affinity processes for plasmid DNA (pDNA) purification. In the current study, pDNA binding affinities of berberine, berenil, kanamycin, and neomycin were evaluated by a competitive displacement assay with ethidium bromide using a fluorimetric titration technique. The binding between pDNA and ethidium bromide was tested in different buffer conditions, varying the type and the salt concentration, and was performed in both the absence and presence of the studied compounds. The results showed that the minor groove binder berenil has the higher pDNA binding constant. Chromatographic experiments using a derivatized column with berenil as ligand showed a total retention of pDNA using 1.3 M ammonium sulfate in eluent buffer. A selective separation of supercoiled and open circular isoforms was achieved by further decreasing the salt concentration to 0.6 M and then to 0 M. These results suggest a promising application of berenil as ligand for specific purification of pDNA supercoiled isoform by pseudo-affinity chromatography.  相似文献   

10.
Gene therapy and DNA vaccination applications have increased the demand for highly purified plasmid DNA (pDNA) in the last years. One of the main problems related to the scale-up of pDNA purification is the degradation of the supercoiled (sc) isoforms during cell culture and multi-stage purification. In this work, a systematic study of the stability of two model plasmids (3,697 and 6,050 bp) during a mid-scale production process, which includes fermentation, alkaline lysis, isopropanol and ammonium sulphate precipitation and hydrophobic interaction chromatography, was performed. Results indicate that by extending cell culture (up to 26 h) and cell lysis (up to 2 h) it is possible to significantly reduce the amounts of RNA, without significantly compromising the yields of the sc pDNA isoform, a feature that could be conveniently exploited for downstream processing purposes. The stability of pDNA upon storage of E. coli pellets at different temperatures indicates that, differently from RNA, pDNA is remarkably stable when stored in cell pellets (>3 weeks at 4°C, >12 weeks at −20°C) prior to processing. With alkaline lysates, however, storage at −20°C is mandatory to avoid sc pDNA degradation within the first 8 weeks. Furthermore, the subsequent purification steps could be carried out at room temperature without significant pDNA degradation. Since the unit operations and process conditions studied in this work are similar to those generally used for plasmid DNA production, the results presented here may contribute to improve the current knowledge on plasmid stability and process optimization. Authors Freitas and Azzoni contributed equally to this work.  相似文献   

11.
Single step affinity chromatography was employed for the purification of plasmid DNA (pDNA), thus eliminating several steps compared with current commercial purification methods for pDNA. Significant reduction in pDNA production time and cost was obtained. This chromatographic operation employed a peptide-monolith construct to isolate pDNA from Escherichia coli (E. coli) impurities present in a clarified lysate feedstock. Mild conditions were applied to avoid any degradation of pDNA. The effect of some important parameters on pDNA yield was also evaluated with the aim of optimising the affinity purification of pDNA. The results demonstrate that 81% of pDNA was recovered and contaminating gDNA, RNA and protein were removed below detectable levels.  相似文献   

12.
A number of anion-exchange adsorbents were constructed, employing nonporous silica fibers, and examined with the aim of describing factors that influence desorption and recovery of plasmid DNA (pDNA). The fibers were provided with ligands via adsorption of the polymeric amines poly(ethyleneimine) or chitosan, or via graft-polymerization of primary, tertiary, or quaternary amine monomers to vinyl-silanized fibers. Several adsorbents showed an almost irreversible plasmid binding. It was suggested that important factors affecting the DNA releasing ability are (i) type of amine ligand used (primary amines bind plasmids the strongest), (ii) the structure of the nucleic acid (supercoiled pDNA may bind stronger than linear genomic DNA), (iii) shift of ligand pK(a) (due to the proximity of highly charged pDNA), and (iv) the solid support itself (steric factors may lead to kinetically stable complexes). The last factor was derived from several comparisons between support-bound ligand and free soluble ligand. It was thus observed that polyelectrolyte complexes associated with a surface were much more difficult to dissociate than the equivalent soluble complexes.  相似文献   

13.
The aim of this study is to prepare supermacroporous pseudospecific cryogel which can be used for the purification of plasmid DNA (pDNA) from bacterial lysate. N-methacryloyl-(l)-histidine methyl ester (MAH) was chosen as the pseudospecific ligand and/or comonomer. Poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-histidine methyl ester) [PHEMAH] cryogel was produced by free radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. Compared with the PHEMA cryogel (50 μg/g polymer), the pDNA adsorption capacity of the PHEMAH cryogel (13,350 μg/g polymer) was improved significantly due to the MAH incorporation into the polymeric matrix. The amount of pDNA bound onto the PHEMAH cryogel disks first increased and then reached a saturation value (i.e., 13,350μg/g) at around 300 μg/ml pDNA concentration. pDNA adsorption amount decreased from 1137 μg/g to 160 μg/g with the increasing NaCl concentration. The maximum pDNA adsorption was achieved at 25 °C. The overall recovery of pDNA was calculated as 90%. The PHEMAH cryogel could be used 3 times without decreasing the pDNA adsorption capacity significantly. The results indicate that the PHEMAH cryogel disks promise high selectivity for pDNA.  相似文献   

14.
The success and validity of gene therapy and DNA vaccination in in vivo experiments and human clinical trials depend on the ability to produce large amounts of plasmid DNA according to defined specifications. A new method is described for the purification of a cystic fibrosis plasmid vector (pCF1-CFTR) of clinical grade, which includes an ammonium sulfate precipitation followed by hydrophobic interaction chromatography (HIC) using a Sepharose gel derivatized with 1,4-butanediol-diglycidylether. The use of HIC took advantage of the more hydrophobic character of single-stranded nucleic acid impurities as compared with double-stranded plasmid DNA. RNA, denatured genomic and plasmid DNAs, with large stretches of single strands, and lipopolysaccharides (LPS) that are more hydrophobic than supercoiled plasmid, were retained and separated from nonbinding plasmid DNA in a 14-cm HIC column. Anion-exchange HPLC analysis proved that >70% of the loaded plasmid was recovered after HIC. RNA and denatured plasmid in the final plasmid preparation were undetectable by agarose electrophoresis. Other impurities, such as host genomic DNA and LPS, were reduced to residual values with the HIC column (<6 ng/microg pDNA and 0.048 EU/microg pDNA, respectively). The total reduction in LPS load in the combined ammonium acetate precipitation and HIC was 400,000-fold. Host proteins were not detected in the final preparation by bicinchoninic acid (BCA) assay and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with silver staining. Plasmid identity was confirmed by restriction analysis and biological activity by transformation experiments. The process presented constitutes an advance over existing methodologies, is scaleable, and meets quality standards because it does not require the use of additives that usually pose a challenge to validation and raise regulatory concerns.  相似文献   

15.
Strong ion-exchange protein chromatography is one of the most powerful and most common steps for protein purification in both discovery research and manufacturing. However, the demands on protein purification of early drug discovery and later stage manufacturing are quite different. In order to shorten the time of developing a purification process for new protein drug candidates, there is a need for a strong ion-exchange resin that will be optimum for both stages. This article details a novel anion-exchange resin suitable for research, as well as for clinical manufacturing. In this study, a novel Q resin anion-exchange prototype was evaluated and compared to the GE Healthcare Q Sepharose® Fast Flow (QFF) and Q Sepharose® High Performance (QHP) resins. This study specifically focused on the following: resolution, dynamic binding capacity, flow rate, back pressure, and scale up. The evaluation was performed in both small- and large-scale experiments. From all the comparable data, the prototype resin is adaptable for both discovery research and manufacturing. Its wide-range operation suitability could potentially shorten the time required to develop conventional purification protocols for clinical manufacturing.  相似文献   

16.
Strong ion-exchange protein chromatography is one of the most powerful and most common steps for protein purification in both discovery research and manufacturing. However, the demands on protein purification of early drug discovery and later stage manufacturing are quite different. In order to shorten the time of developing a purification process for new protein drug candidates, there is a need for a strong ion-exchange resin that will be optimum for both stages. This article details a novel anion-exchange resin suitable for research, as well as for clinical manufacturing. In this study, a novel Q resin anion-exchange prototype was evaluated and compared to the GE Healthcare Q Sepharose? Fast Flow (QFF) and Q Sepharose? High Performance (QHP) resins. This study specifically focused on the following: resolution, dynamic binding capacity, flow rate, back pressure, and scale up. The evaluation was performed in both small- and large-scale experiments. From all the comparable data, the prototype resin is adaptable for both discovery research and manufacturing. Its wide-range operation suitability could potentially shorten the time required to develop conventional purification protocols for clinical manufacturing.  相似文献   

17.
Transient expression of recombinant proteins in mammalian cell culture in a 100-L scale requires a large quantity of plasmid that is very labour intensive to achieve with shake flask cultures and commercially available plasmid purification kits. In this paper we describe a process for plasmid production in 100-mg scale. The fermentation is carried out in a 4-L fed-batch culture with a minimal medium. The detection of the end of batch and triggering the exponential (0.1 h(-1)) feed profile was unattended and controlled by Multi-fermenter Control System. A restricted specific growth rate in fed-batch culture increased the specific plasmid yield compared to batch cultures with minimal and rich media. This together with high biomass concentration (68-107 g L(-1) wet weight) achieves high volumetric yields of plasmid (95-277 mg L(-1) depending on the construct). The purification process consisted of alkaline lysis, lysate clarification and ultrafiltration, two-phase extraction with Triton X-114 for endotoxin removal, anion-exchange chromatography as a polishing step, ultrafiltration and sterile filtration. Both fermentation and purification processes were used without optimisation for production of four plasmids yielding from 39 to 163 mg of plasmids with endotoxin content of 2.5 EU mg(-1) or less.  相似文献   

18.
The demand for plasmid DNA (pDNA) is anticipated to increase significantly as DNA vaccines and non-viral gene therapies enter phase 3 clinical trials and are approved for use. This increased demand, along with renewed interest in pDNA as a therapeutic vector, has motivated research targeting the design of high-yield, cost-effective manufacturing processes. An important aspect of this research is engineering bacterial strains and plasmids that are specifically suited to the production of plasmid biopharmaceuticals. This review will survey recent innovations in strain and vector engineering that aim to improve plasmid stability, enhance product safety, increase yield, and facilitate downstream purification. While these innovations all seek to enhance pDNA production, they can vary in complexity from subtle alterations of the host genome or vector backbone to the investigation of non-traditional host strains for higher pDNA yields.  相似文献   

19.
A method to attach a fluorochrome sequence-specifically to supercoiled plasmid DNA (pDNA) without perturbing transgene expression would provide an invaluable aid in a variety of applications requiring probes for the intracellular tracking of transfected pDNA. Here we report a method to couple commercially available fluorochromes covalently and sequence-specifically to pDNA using a peptide nucleic acid (PNA) as a linker molecule. The terminal cysteine thiol group on the PNA peptide backbone is reacted with a maleimide moiety on the fluorochrome to produce a fluorescent conjugate which is in turn hybridized to a plasmid expression vector containing an 11-bp target sequence. Spectroscopic evaluation and an electrophoretic mobility shift assay showed that the pDNA hybridized to one PNA-fluorochrome conjugate molecule. The fluorescence signal comigrated with pDNA on acrylamide gels, confirming the stable attachment of the fluorescent conjugate to the pDNA. The utility of one of the conjugates, PNA-Oregon green 488/pCMVbeta-DTS, to probe pDNA transport across the nuclear envelope, a significant barrier to gene transfer, was undertaken using a digitonin-permeabilized HeLa cell assay. The PNA-Oregon green 488/pCMVbeta-DTS conjugate is able to efficiently traverse the nuclear membrane of the permeabilized cells, accumulating in the nuclei within 30 min and reaching maximal levels by 1h. When transfected into HeLa cells, the PNA-Oregon green 488/pCMVbeta-DTS conjugate retained 55% of the native plasmid's biological activity, as determined by a beta-galactosidase assay. Thus, this method allows for the sequence-specific coupling of commercially available fluorochromes to DNA expression vectors while retaining biological function.  相似文献   

20.
This contribution describes the preparation of strong anion-exchange membranes with higher protein binding capacities than the best commercial resins. Quaternary amine (Q-type) anion-exchange membranes were prepared by grafting polyelectrolyte nanolayers from the surfaces of macroporous membrane supports. A focus of this study was to better understand the role of polymer nanolayer architecture on protein binding. Membranes were prepared with different polymer chain graft densities using a newly developed surface-initiated polymerization protocol designed to provide uniform and variable chain spacing. Bovine serum albumin and immunoglobulin G were used to measure binding capacities of proteins with different size. Dynamic binding capacities of IgG were measured to evaluate the impact of polymer chain density on the accessibility of large size protein to binding sites within the polyelectrolyte nanolayer under flow conditions. The dynamic binding capacity of IgG increased nearly linearly with increasing polymer chain density, which suggests that the spacing between polymer chains is sufficient for IgG to access binding sites all along the grafted polymer chains. Furthermore, the high dynamic binding capacity of IgG (>130 mg/mL) was independent of linear flow velocity, which suggests that the mass transfer of IgG molecules to the binding sites occurs primarily via convection. Overall, this research provides clear evidence that the dynamic binding capacities of large biologics can be higher for well-designed macroporous membrane adsorbers than commercial membrane or resin ion-exchange products. Specifically, using controlled polymerization leads to anion-exchange membrane adsorbers with high binding capacities that are independent of flow rate, enabling high throughput. Results of this work should help to accelerate the broader implementation of membrane adsorbers in bioprocess purification steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号