首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of the putative maturation inhibitor in porcine follicular fluid on gonadotropinstimulated reversal of cyclic adenosine monophosphate (cAMP)-maintained meiotic arrest in mouse oocytes in vitro were assessed in this study. When cumulus cell-enclosed oocytes were cultured in a suboptimal inhibitory concentration of dibutyryl cAMP (dbcAMP), the effect of follicle-stimulating hormone (FSH) on oocyte maturation was initially inhibitory at 3 hr, but stimulatory at 6 hr. Supplementation of the medium with an ultrafiltrate of porcine follicuiar fluid (PM10-filtrate) completely suppressed FSH-promoted reversal of inhibition at 6 hr. Charcoal extraction eliminated this effect of the PM10-filtrate. FSH reversed the inhibition of maturation of cumulus cell-enclosed oocytes maintained by a high concentration of dbcAMP and suboptimal concentrations of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl xanthine (IBMX), during a 21–22-hr culture period. However, the effect of a completely inhibitory concentration of IBMX was not reversed by gonadotropin. A component of serum was also found to inhibit FSH reversal of dbcAMP-maintained meiotic arrest, and this activity was removed by charcoal extraction. In addition, when oocytes were cultured in medium containing a suboptimal concentration of dbcAMP plus a low molecular weight fraction (< 1,000) of porcine follicular fluid, porcine serum, or fetal bovine serum, a synergistic inhibition of maturation was observed. Experiments with highly purified gonadotropins revealed that reversal of dbcAMP-maintained meiotic arrest occurred only in response to FSH; neither highly purified luteinizing hormone nor human chorionic gonadotropin could mimic this action of FSH. Also, this effect was mediated by the cumulus cells, since FSH could not reverse dbcAMP-maintained meiotic arrest in denuded oocytes. Furthermore, elevating cAMP levels in denuded oocytes augmented, rather than reversed, the inhibitory action of dbcAMP on oocyte maturation. These data therefore suggest that dbcAMP- or IBMX-maintained meiotic arrest in vitro is reversed by an FSH-stimulated, cAMP-dependent process mediated by the cumulus cells and demonstrate that a factor present both in follicular fluid and serum prevents this action of the gonadotropin.  相似文献   

2.
The present study was carried out to examine the role of protein synthesis in mouse oocyte maturation in vitro. In the first part of this study, the effects of cycloheximide (CX) were tested on spontaneous meiotic maturation when oocytes were cultured in inhibitor-free medium. CX reversibly suppressed maturation of oocytes as long as maturation was either initially prevented by the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine (IBMX), or delayed by follicle-stimulating hormone (FSH). In the second part of this study, the actions of protein synthesis inhibitors were tested on hormone-induced maturation. CEO were maintained in meiotic arrest for 21-22 h with hypoxanthine, and germinal vesicle breakdown (GVB) was induced with follicle-stimulating hormone (FSH). Three different protein synthesis inhibitors [CX, emetine (EM), and puromycin (PUR)] each prevented the stimulatory action of FSH on GVB in a dose-dependent fashion. This was accompanied by a dose-dependent suppression of 3H-leucine incorporation by oocyte-cumulus cell complexes. The action of these inhibitors on FSH- and epidermal growth factor (EGF)-induced GVB was next compared. All three drugs lowered the frequency of GVB in the FSH-treated groups, below even that of the controls (drug + hypoxanthine); the drugs maintained meiotic arrest at the control frequencies in the EGF-treated groups. Puromycin aminonucleoside, an analog of PUR with no inhibitory action on protein synthesis, had no effect. The three inhibitors also suppressed the stimulatory action of FSH on oocyte maturation when meiotic arrest was maintained with the cAMP analog, dbcAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of meiotic competence of oocytes and time of their maturation on the efficiency of fertilization was studied in pigs. Cycling gilts with synchronized estrous cycles were used as oocyte donors. To obtain oocytes with different meiotic competence, oocytes were recovered separately from small and medium follicles in the early, middle and late luteal or early follicular phase. They were matured for 40 h, 43 h or 47 h and fertilized by spermatozoa of a proven boar. The penetration and monospermy rates, and total efficiency of fertilization were assessed. The same data were related to the follicle size, with or without regard to the phase, and to the maturation time. Regardless of the phase and the time of maturation, the monospermy rate and total efficiency of fertilization were significantly lower for the small follicle-derived oocytes than for the medium follicle-derived oocytes (38.5±10.4% vs 63.1±7.0% and 24.7±6.3% vs 42.5±3.8%). With regard to the phase, in the small follicle-derived oocytes, the monospermy rate increased significantly (P<0.05) from the early luteal to the late luteal phase (from 25.4±2.4% to 46.4±3.9%) and remained unchanged in the early follicular phase. A similar tendency was observed in the total efficiency of fertilization. No differences were found in either of these parameters in medium follicle-derived oocytes in the late luteal and early follicular phase. With regard to the time of maturation, the total efficiency of fertilization was significantly higher (P<0.05) in the small follicle-derived oocytes matured for 47 h than in those matured for 40 h (27.7±7.4% vs. 20.5±6.1%) and in the medium follicle-derived oocytes matured for 40 h as compared with those matured for 47 h (47.1±1.9% vs. 32.7±1.1%). With regard to the phase and the time of maturation, the differences were significant only in the late luteal and early follicular phases. It can be concluded that greater meiotic competence of porcine oocytes positively influences monospermy rate and total efficiency of fertilization process. However adequate time of maturation is an important factor for oocytes with different meiotic competence to improve the IVF procedure.  相似文献   

4.
This study was conducted to evaluate the effect of caffeine on the meiotic maturation of porcine oocytes. Oocyte-cumulus complexes were collected from slaughterhouse-derived ovaries and cultured for 24, 32 or 48 h in medium 199 supplemented with 10% fetal calf serum, 10 microg/ml FSH, 50 microg/ml sodium pyruvate and 50 microg/ml gentamicin in the presence or absence of 2.5 mM caffeine. Caffeine inhibited the meiotic resumption of pig oocytes effectively after 24 h of culture, and 95.5% of oocytes were arrested at the germinal vesicle (GV) stage (control 17.8%, p < 0.05). Prolonged culture with caffeine up to 32 h or 48 h, however, resulted in a significant decrease in the inhibitory effect (GV: 13.8% and 8.2%). The number of oocytes at metaphase II after 48 h of culture in the presence of caffeine was significantly lower than that in the control medium (65.3% vs 94.7%, p < 0.05). The withdrawal of caffeine after 24 h of culture resulted in the resumption of meiotic maturation, and the oocytes reached metaphase II after 48 h. However, the ability of caffeine-treated oocytes to develop to blastocysts after artificial activation was lower than that of the control (5.5% vs 9.1%, p < 0.05). Caffeine treatment significantly increased cAMP levels in the oocytes after 24 h of culture, while both Cdc2 kinase and MAP kinase activation were inhibited in the oocytes. These results suggest that caffeine, similarly to other purine derivatives, prolongs the meiotic arrest of porcine oocytes at the GV stage, perhaps by its action of increasing the cAMP level and by the suppression of Cdc2 kinase and MAP kinase activities in the oocytes.  相似文献   

5.
Investigations of oocyte in vitro maturation within a mouse model   总被引:3,自引:0,他引:3  
This study attempted to develop a 'less meiotically competent' murine model for oocyte in vitro maturation (IVM), which could more readily be extrapolated to human clinical assisted reproduction. Oocyte meiotic competence was drastically reduced upon shortening the standard duration of in vivo gonadotrophin stimulation from 48 h to 24 h, and by selecting only naked or partially naked germinal vesicle oocytes, instead of fully cumulus enclosed oocyte complexes. With such a less meiotically competent model, only porcine granulosa coculture significantly enhanced the oocyte maturation rate in vitro, whereas no significant enhancement was observed with macaque and murine granulosa coculture. Increased serum concentrations and the supplementation of gonadotrophins, follicular fluid and extracellular matrix gel within the culture medium did not enhance IVM under either cell-free or coculture conditions. Culture medium conditioned by porcine granulosa also enhanced the maturation rate, and this beneficial effect was not diminished upon freeze-thawing. Enhanced IVM in the presence of porcine granulosa coculture did not, however, translate into improved developmental competence, as assessed by in vitro fertilization and embryo culture to the blastocyst stage.  相似文献   

6.
The aim of this study was to test the following hypotheses: (i) that oocyte maturation is controlled by surrounding follicular cells; (ii) that a meiosis-regulating factor of follicular origin is not species-specific; (iii) that one of the follicular regulators of oocyte maturation is IGF-I; and, (iv) that Cumulus oophorus and tyrosine kinase-dependent intracellular mechanisms do not mediate IGF-I action on oocytes. It was found that co-culture of cumulus-enclosed bovine oocytes with isolated bovine ovarian follicles or with isolated porcine ovarian follicles significantly increased the proportion of matured oocytes (at metaphase II of meiosis) after culture. Porcine oocytes without cumulus investments had lower maturation rates than cumulus-enclosed oocytes. Co-culture with isolated porcine ovarian follicles resulted in stimulation of maturation of both cumulus-free and cumulus-enclosed porcine oocytes. These observations suggest that follicular cells (whole follicles or Cumulus oophorus) support bovine and porcine oocyte maturation, and that follicular maturation-promoting factor is not species-specific. The release of significant amounts of IGF-I by cultured bovine and porcine isolated follicles and granulosa cells was demonstrated. Addition of IGF-I to culture medium at 10 or 100 (but not 1000) ng/ml stimulated meiotic maturation of both cumulus-enclosed and cumulus-free porcine oocytes. Neither of the tyrosine kinase blockers, genistein or lavendustin (100 ng/ml medium), changed the stimulating effect of IGF-I on porcine oocytes. The present data suggest that at least one of the follicular stimulators of oocyte nuclear maturation is IGF-I, and that its effect is probably not mediated by cumulus investment or by tyrosine kinase-dependent intracellular mechanisms.  相似文献   

7.
The concentration of hypoxanthine in mouse follicular fluid has been estimated to be 2-4 mM, and although this concentration maintains meiotic arrest in fully grown mouse oocytes in vitro, oocyte maturation in vivo is not induced by a decrease in the concentration of this purine in follicular fluid (J. J. Eppig, P. F. Ward-Bailey, and D. L. Coleman, Biol. Reprod. 33, 1041-1049, 1985). In the present study, the effect of 2 mM hypoxanthine on oocyte growth and development in vitro was assessed and the ability of gonadotropins to stimulate oocyte maturation in the continued presence of hypoxanthine was determined. Oocyte-granulosa cell complexes were isolated from 10- to 11-day-old mice and cultured in the presence or absence of 2 mM hypoxanthine. Oocytes from 10- to 11-day-old mice are in mid-growth phase and, without further development, are incompetent of undergoing meiotic maturation. During a 12-day culture period the granulosa cell-enclosed oocytes approximately doubled in size and, regardless of the presence or absence of hypoxanthine, 50-70% developed competence to undergo germinal vesicle breakdown (GVBD). Hypoxanthine promoted the continued association of oocytes with their companion granulosa cells during the 12-day culture period, and therefore had a beneficial effect on oocyte development. Most of the oocytes that acquired GVBD competence in the absence of hypoxanthine underwent spontaneous GVBD. In contrast, 95% of the GVBD-competent oocytes were maintained in meiotic arrest by hypoxanthine. Following withdrawal of the hypoxanthine after the 12-day culture, 75% of the GVBD-competent oocytes underwent GVBD. These results show that hypoxanthine, and/or its metabolites, maintains meiotic arrest in oocytes that grow and acquire GVBD competence in vitro. Follicle-stimulating hormone (FSH), but not luteinizing hormone or human chorionic gonadotropin, induced oocyte GVBD in the continued presence of hypoxanthine. FSH stimulated oocyte maturation at a significantly (P less than 0.01) higher frequency than coculture of the granulosa cell-denuded oocytes with granulosa cells in the continued presence of hypoxanthine. FSH did not induce the maturation of denuded oocytes cocultured with granulosa cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
We have investigated the effect of co-culture with porcine spermatozoa on in vitro maturation of porcine germinal vesicle (GV) oocytes before fertilization. Most oocytes were arrested at the first prophase of meiosis when oocytes were cultured in TCM 199 alone, but the proportion of oocytes that reached metaphase II was significantly elevated by co-incubation with spermatozoa in vitro. The oocyte maturation effect was observed with intact and parts of spermatozoa (head and tail) collected from adult swine (regardless of source). However, gonocytes from the newborn porcine testis were not able to enhance in vitro maturation of porcine germinal vesicle oocytes. Interestingly, the oocyte maturation effect by spermatozoa was not decreased with heat treatment, but the maturation effect of oocyte treatment disappeared with exposure to detergent in sperm suspension. Porcine spermatozoa were also observed to stimulate meiosis of oocytes, which was maintained at meiotic arrest using dibutyryl cyclic AMP or forskolin. The study suggests that (i) membrane of porcine spermatozoa contains a substance(s) that can enhance in vitro maturation of oocytes prior to fertilization, (ii) the putative meiosis-enhancing substance(s) of spermatozoa from adult testes retains the oocyte maturation effect during transportation of spermatozoa through epididymis, and (iii) the putative meiosis-enhancing substance(s) is able to overcome the inhibitory effect of dibutyryl cyclic AMP or forskolin by inducing germinal vesicle breakdown of porcine cumulus-oocyte complexes maintained in meiotic arrest.  相似文献   

9.
As an important biological messenger, nitric oxide (NO) exhibits a wide range of effects during physiological and pathophysiological processes, including mammalian oocyte meiotic maturation. The present study investigated whether NO derived from two nitric oxide synthase (NOS) isoforms, inducible NOS (iNOS) or endothelial NOS (eNOS), is involved in the meiotic maturation of porcine oocytes. Meanwhile, the cumulus cells' function in meiotic maturation and their interaction with oocyte development and degeneration were also investigated using cumulus-enclosed oocytes (CEOs) and denuded oocytes (DOs). Different inhibitors for NOS were supplemented to the medium. Cumulus expansion, cumulus cell DNA fragmentation and oocyte meiotic resumption were evaluated 48 h after incubation. Aminoguanidine (AG), a selective inhibitor for iNOS, suppressed cumulus expansion and inhibited CEOs to resume meiosis (p < 0.05), but did not inhibit cumulus cell DNA fragmentation. Both Nomega-nitro-L-arginine (L-NNA) and Nomega-nitro-L-arginine methyl ester (L-NAME), inhibitors for both iNOS and eNOS, delayed cumulus expansion, inhibited cumulus cell DNA fragmentation and inhibited CEOs to resume meiosis. Such effects were not seen in DOs. These results indicate that iNOS-derived NO is necessary for cumulus expansion and meiotic maturation by mediating the function of the surrounding cumulus cells, and eNOS-derived NO is also involved in porcine meiotic maturation.  相似文献   

10.
Fully grown germinal vesicle-stage oocytes are induced to resume meiosis and acquire the capacity to undergo fertilization in response to a surge of gonadotropins. The present study examined possible direct and indirect roles of gonadotropins in the maturation and fertilization of rat oocytes by determining 1) the effect of exogenous administration of gonadotropins (priming) to immature rats prior to oocyte collection on the capacity of oocytes to undergo maturation and fertilization in vitro, 2) the effect of follicle-stimulating hormone (FSH) in the maturation media on the resumption of meiosis and subsequent capacity of oocytes to undergo fertilization, and 3) the capacity of oocytes to undergo maturation and fertilization following culture in preovulatory follicular fluid or in conditioned media obtained from gonadotropin-stimulated granulosa cell (GC) cultures. In the first experiment, oocytes from unprimed rats underwent spontaneous meiotic maturation in vitro and 17% underwent subsequent fertilization. Priming increased the proportion of oocytes undergoing fertilization. Maturation of oocytes in media supplemented with various concentrations of FSH or for various lengths of time (6-16 h) in medium with 500 ng FSH/ml indicated that FSH slowed the rate of meiotic maturation, but had no effect on the capacity of the oocytes to be fertilized. Oocytes obtained from primed animals and cultured in the presence of preovulatory follicular fluid were fertilized in proportions similar to those cultured in serum-containing medium. In the third experiment, medium conditioned by FSH-stimulated GC for 40 h slowed the rate of meiotic maturation; the addition of luteinizing hormone (LH) to the FSH-stimulated cells produced a medium in which the rate of oocyte maturation was not different from that of control oocytes (in medium from unstimulated cells). Medium conditioned by FSH- or LH-stimulated GC, but not fibroblasts, increased the proportions of oocytes undergoing fertilization following maturation in those media. FSH + LH stimulation of GC increased the fertilization of oocytes to proportions significantly higher than with either gonadotropin alone. These data suggest that GC respond to gonadotropin stimulation by providing a factor(s) that regulates the rate of oocyte maturation and promotes the capacity of oocytes to undergo fertilization.  相似文献   

11.
目的 利用在培养液中添加绵羊卵泡液和次黄嘌呤 ,抑制卵母细胞GVBD发生 ,延长转录活性 ,从而使卵母细胞真正成熟 ,提高胚胎质量及生产效率。方法 利用体外成熟技术对有屠宰采集的绵羊卵母细胞进行培养 ,培养液中添加卵泡液及次黄嘌呤 ,检查成熟效果。结果 将卵母细胞培养在 5 0 %和 10 0 %的卵泡液中 ,2 4h后处于GV期的卵母细胞分别为 19% (8 4 2 )和 33 3% (13 39)。在含有 4mmol L次黄嘌呤的培养液中 ,2 4h后有2 1 6 % (16 74 )的卵母细胞处GV期 ,而对照组中只有 6 % (3 5 0 ) ,经过次黄嘌呤处理的卵母细胞多数都停滞于PⅠ期(44 6 % ,33 74 )。在 4mmol L次黄嘌呤培养液中添加FSH并未使受到抑制的卵母细胞诱导成熟。结论 卵泡液和次黄嘌呤只能在有限的程度上抑制减数分裂的重新启动 ,并对减数分裂的全过程都有影响 ,这种影响程度与抑制因子的浓度相关 ,存在明显的剂量效应。  相似文献   

12.
Effects of bovine follicular fluid on maturation of bovine oocytes   总被引:6,自引:0,他引:6  
Three experiments were conducted to determine the effects of follicular fluid and media on bovine oocyte maturation. Experiments 1 and 3 test the effects of follicular fluid obtained at different times after the LH surge on bovine oocyte maturation in vitro, while Experiment 2 was designed to compare TALP and Medium 199 as serum-free maturation media. Bovine follicular fluid (BFF) was obtained from preovulatory follicles either before (0 h BFF) or at 4, 8, 12 or 20 h after a GnRH-induced LH surge. Oocytes were obtained from follicles 1 to 6 mm in diameter from ovaries retrieved from a slaughterhouse. In Experiment 1, both 0 h and 4 h BFF inhibited resumption of meiosis, whereas BFF collected at 8, 12 and 20 h did not. When oocytes were cultured in media that contained equal portions of 0 and 8 h BFF, meiosis was not inhibited. In Experiment 2, Medium 199 supplemented with bovine serum albumin (BSA) was superior to Tyrode's medium with albumin, lactate and pyruvate for oocyte maturation. In Experiment 3, a higher percentage (P<0.05) of oocytes cultured for 18 h in 40% 20 h BFF in Medium 199 reached Metaphase-II (64%) than those cultured in 0 h BFF (41%) or control medium (39%). There was a transient meiotic arrest due to 0 h BFF as evidenced by the higher percentage of oocytes with germinal vesicles at 8 h of incubation (35% with 0 h vs 20% with 20 h; P<0.05). Furthermore, expansion of cumulus cells was induced in 8 and 20 h BFF, but not 0 h BFF.  相似文献   

13.
The present study examined the effect of different concentrations of cysteine in the presence of a thiol compound, beta-mercaptoethanol (BME), during in vitro maturation (IVM) of pig oocytes on cumulus expansion, nuclear maturation, intracellular glutathione (GSH) level and subsequent embryonic development after in vitro fertilisation (IVF). In experiment 1, oocytes were matured in NCSU 23 medium containing 10% porcine follicular fluid, 25 microM BME, 0.5 microgram/ml LH, 0.5 microgram/ml FSH and 0, 0.1, 0.2 or 0.4 mg/ml cysteine for 20-22 h and then without hormonal supplements for an additional 20-22 h. After culture, cumulus cells were removed and a proportion of oocytes fixed to examine the rate of nuclear maturation. The remaining oocytes were co-incubated with spermatozoa for 5-6 h and putative zygotes were transferred to NCSU 23 medium containing 0.4% bovine serum albumin for 144 h. A proportion of putative zygotes were fixed 12 h after insemination to examine fertilisation parameters. In experiment 2, oocytes were matured as in experiment 1 and the GSH content was measured by a DTNB-GSSG reductase recycling assay. No mean differences among treatments were observed in nuclear maturation (78-89%). The mean differences in penetration rate (69-77%), polyspermy rate (31-40%), male pronuclear formation rate (93-96%) or mean number of sperm per oocyte (1.5-1.8) were not affected by the presence or absence of cysteine during oocyte maturation. Also no difference was observed in cleavage rates 48 h after insemination. However, compared with no addition (19%), the presence of 0.1-0.4 mg/ml cysteine during IVM increased (p < 0.001) the proportion of blastocysts (32-39%) at 144 h. In comparison with controls (5.6 pmol/oocyte), the GSH content of oocytes matured in the presence of cysteine was significantly (p < 0.001) higher (13-15 pmol/oocyte) with no mean differences among different cysteine concentrations. The results indicate that in the presence of a thiol compound, supplementation of IVM medium with cysteine can increase the GSH level and improve the developmental competence of pig oocytes following fertilisation. Further, no effect on either GSH level or embryo development was observed by increasing the levels of cysteine supplementation from 0.1 to 0.4 mg/ml.  相似文献   

14.
The present study was undertaken to determine the effects of a protein kinase C inhibitor, staurosporine, on gonadotropin-releasing hormone agonist (GnRHa)-induced oocyte maturation and follicular prostaglandin (PG) production, and the response to direct activators of protein kinase C using rabbit mature follicle culture. Treatment of mature follicles with GnRHa (buserelin and leuprolide acetate) neither stimulated nor inhibited cAMP accumulation in both the follicle and oocyte. Exposure to staurosporine at 10(-6) M 60 or 15 min before GnRHa (buserelin) administration reduced significantly the meiotic maturation of follicle-enclosed oocytes induced by GnRHa at 10(-7) M. However, staurosporine addition coincident with the agonist or thereafter did not inhibit meiotic maturation. Staurosporine suppressed GnRHa-induced meiotic maturation in a dose-dependent manner, whereas hCG-stimulated oocyte maturation was not inhibited. Similarly, staurosporine administered 60 min before exposure to GnRHa suppressed GnRHa-stimulated PG production by mature follicles. The active phorbol esters, 10(-6) M 12-0-tetra-decanoyl phorbol 13-acetate (TPA) and 10(-6) M 4 beta-phorbol 12,13-didecanoate (4 beta-PDD) stimulated meiotic maturation whereas the biological inactive isomer, 4 alpha-PDD, did not. The kinetics of germinal versicle breakdown of follicle-enclosed oocytes in the presence of active phorbol esters paralleled that of GnRHa-treated oocytes. Furthermore, the concomitant addition of staurosporine at 10(-6) M to the culture medium inhibited significantly (p less than 0.05) TPA-induced meiotic maturation. These data demonstrate that GnRHa stimulated both the meiotic maturation of follicle-enclosed oocytes and follicular PG formation via a mechanism other than the cAMP-mediated process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Forskolin induced biphasic responses of cumulus progesterone secretion (determined by RIA) and cumulus mass expansion, with maximal increases occurring at 6.25 microns, and subsequent dose-dependent declines observed up to 10 microns-forskolin. The diterpene induced dose-dependent responses in the % germinal vesicle (GV) of cumulus-enclosed and denuded oocytes (0.23 and 4.84 microns maintained 50% GV, respectively), it increased the cAMP content of cumulus masses, cumulus-enclosed oocytes and denuded oocytes, and increased heterologous metabolic coupling (determined by measuring transfer of radiolabelled uridine marker from the cumulus mass to the oocyte). A significant correlation was established between the amount of cAMP within the cumulus mass and that in the corresponding oocyte (r = 0.58). Above 10 microns-forskolin, the cAMP content of cumulus-enclosed oocytes was significantly greater than that of denuded oocytes (100 microns-forskolin: 0.118 +/- 0.082 and 0.006 +/- 0.001 pmol/oocyte respectively; P less than 0.001, paired t test), and the enhanced arresting action of forskolin upon cumulus-enclosed oocytes was correlated with an increase in intra-oocyte cAMP. Maintenance of meiotic arrest and stimulation of oocyte-cumulus cAMP were reversible. During 48 h of culture, the arresting action of forskolin (50 microns) was maintained on denuded and cumulus-enclosed oocytes but heterologous metabolic coupling significantly declined. The cAMP content of the cumulus mass and corresponding oocyte significantly declined, while that of the denuded oocyte remained unchanged. The cAMP content of arrested cumulus-enclosed oocytes cultured for 48 h in 50 microns-forskolin was significantly greater than that of maturing oocytes cultured for 24 h in 50 microns-forskolin and then for 24 h in control medium. These results show that (1) forskolin stimulates progesterone secretion and expansion of pig cumuli, but at high doses the drug inhibits these functions while cumulus cAMP remains elevated; (2) when heterologous metabolic coupling is maintained, cumulus cAMP may be transferred to the oocyte; (3) the pig oocyte can synthesize cAMP; and (4) forskolin-maintenance of meiotic arrest of pig oocytes is correlated with elevated intra-oocyte cAMP but a 'factor' other than cAMP is also involved in maintenance of meiotic arrest.  相似文献   

16.
17.
Mayes MA  Sirard MA 《Theriogenology》2001,55(4):911-922
This study evaluated whether pre-established morphological classes of bovine cumulus oocyte complex (COCs) differ in their kinetics of meiosis resumption after 4 h of incubation and whether the timing of COCs resumption of meiosis differed after a period of maintained meiotic arrest. Bovine COCs were aspirated from 2- to 5- mm follicles and classified according to the state of their cumulus cells and cytoplasm (Classes 1 to 3). Groups of 15 to 20 COCs were fixed at 0 h or after an incubation period of 4 h. In addition, COCs from Class 1 were first incubated for 4 h on a theca cell monolayer or in the presence of 2 microg/mL of cycloheximide, rinsed and then incubated in cycloheximide and theca cell-free medium for another 4 h. Oocytes then were fixed and evaluated for state of nuclear maturation. Results show that at 0 h, COCs from Class 3 have fewer oocytes at the GV stage than COCs from Class 1 and Class 2 (respectively 69.3+/-3.2 vs 88.8+/-3.4% and 86.9% GV+/-4.3% SEM; P < 0.05). After 4 h of incubation, all COCs classes show a significant decrease in the number of COCs at the GV stage. The COCs maintained in meiotic arrest and then incubated for 4 h resume meiosis faster than COCs incubated in cycloheximide and theca cell-free medium (19.4+/-2.5, 33.3+/-7.3 and 59.9+/-6.5% GV SEM, respectively). The COCs of Class 3 have fewer oocytes at the GV stage at the beginning of incubation than all other classes. The number of COCs at the GV stage after 4 h of incubation in cycloheximide and theca cell-free medium is not significantly different than those COCs incubated in the presence of theca cell monolayers for 24 h (58.8+/-6.5 vs. 56.4+/-6.4% SEM; respectively). Our results indicate that the ability of theca cells to maintain oocytes at the GV stage could be limited to those oocytes that were not committed or primed in vivo to resume maturation as indicated by their faster maturation kinetics.  相似文献   

18.
Little is known about mitochondrial DNA (mtDNA) replication during oocyte maturation and its regulation by extracellular factors. The present study determined the effects of supplementation of maturation medium with porcine follicular fluid (pFF; 0, 10%, 20%, and 30%) on mtDNA copy number and oocyte maturation in experiment 1; the effects on epidermal growth factor (EGF; 10 ng/mL), neuregulin 1 (NRG1; 20 ng/mL), and NRG1 + insulin-like growth factor 1 (IGF1; 100 ng/mL + NRG1 20 ng/mL), on mtDNA copy number, oocyte maturation, and embryo development after parthenogenic activation in experiment 2; and effects on embryo development after in vitro fertilization in experiment 3. Overall, mtDNA copy number increased from germinal vesicle (GV) to metaphase II (MII) stage oocytes after in vitro maturation (GV: 167 634.6 ± 20 740.4 vs. MII: 275 131.9 ± 9 758.4 in experiment 1; P < 0.05; GV: 185 004.7 ± 20 089.3 vs. MII: 239 392.8 ± 10 345.3 in experiment 2; P < 0.05; Least Squares Means ± SEM). Supplementation of IVM medium with pFF inhibited mtDNA replication (266 789.9 ± 11 790.4 vs. 318 510.1 ± 20 377.4; P < 0.05) and oocyte meiotic maturation (67.3 ± 0.7% vs. 73.2 ± 1.2%, for the pFF supplemented and zero pFF control, respectively; P < 0.01). Compared with the control, addition of growth factors enhanced oocyte maturation. Furthermore, supplementation of NRG1 stimulated mitochondrial replication, increased mtDNA copies in MII oocytes than in GV oocytes, and increased percentage of blastocysts in both parthenogenetic and in vitro fertilized embryos. In this study, mitochondrial biogenesis in oocytes was stimulated during in vitro maturation. Oocyte mtDNA copy number was associated with developmental competence. Supplementation of maturation medium with NRG1 increased mtDNA copy number, and thus provides a means to improve oocyte quality and developmental competence in pigs.  相似文献   

19.
It was shown previously that the frequencies of fertilization and pre- and post-implantation embryonic development of mouse oocytes matured in vitro were similar to those of oocytes matured in vivo (Schroeder and Eppig, Dev Biol 102:493–497, 1984). The present study determined the developmental capacity of mouse oocytes after they had been maintained in meiotic arrest in vitro by substances thought to be important regulators of meiosis in vivo. Oocytes were maintained in meiotic arrest for 12 or 24 h in medium containing maturation inhibitor(s), washed free of inhibitor, and cultured 16 h in inhibitor-free (control) medium to permit meiotic maturation. Four different medium supplements were used to maintain meiotic arrest: (1) 100 μM dibutyryl cAMP plus 1 mM hypoxanthine; (2) 4 mM hypoxanthine plus 0.75 mM adenosine (H + AR); (3) 300 μM dibutyryl cAMP; and (4) 50 μM IBMX. Parallel groups of oocytes were treated to the same experimental protocol except that no inhibitory compounds were used; eg, oocytes were cultured a total of 28 or 40 h in control medium that permitted the resumption of maturation. These latter groups tested the effect of extended culture of mature oocytes on subsequent development. Control oocytes were cultured 16 h in control medium. Oocytes were inseminated and subsequently assessed for development to two-cell and blastocyst stages. When oocytes were first cultured 12 or 24 h in medium that maintained meiotic arrest, development to two-cells in all groups but one were within 10% of controls (70%). The 24 h H + AR group was the one exception (47% two-cells). By contrast, culturing oocytes for 28 or 40 h in inhibitor-free medium resulted in a precipitous decrease in development to two cells (27% and 7%, respectively). Blastocyst development followed the same pattern. When uridine (U) was added to H + AR medium, development to two cells was increased significantly. Also, the addition of FSH to the maturation medium significantly increased both two-cell and blastocyst development in the H + AR and H + AR + U groups. Transfer of compacted morulae from the H + AR + U/FSH group into pseudopregnant hosts produced live young 19 days postinsemination. These data demonstrate that prolonged culture of oocytes matured in vitro decreased their capacity to undergo normal development following insemination, but if oocytes were maintained in meiotic arrest during prolonged culture and then allowed to mature spontaneously, their developmental potential was significantly preserved. These results also lend support for a physiological role of cAMP and purines in the maintenance of meiotic arrest in vivo.  相似文献   

20.
The selection of culture media and supplements therein has a tremendous impact on the regulation of oocyte maturation in vitro. In the present study, we have evaluated how altering the levels of glutamine in the presence or absence of glucose affects meiotic arrest in cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) when cultured in either the simple medium M16 or the more complex Eagle's minimum essential medium (MEM). We have also tested the effectiveness of follicle-stimulating hormone (FSH) in triggering germinal vesicle breakdown (GVB) and purine de novo synthesis in differing MEM culture conditions. When DO were cultured 17-18 hr in hypoxanthine (HX)- or dbcAMP-supplemented M16 medium, neither glucose nor glutamine had any effect on oocyte maturation, with dbcAMP the more effective inhibitor. In the absence of glutamine, cumulus cells promoted meiotic resumption, since significantly lower levels of meiotic arrest were maintained in CEO than in DO by either HX or dbcAMP, but addition of the amino acid dose-dependently decreased the maturation percentage in CEO below that observed in DO. In MEM, glutamine and glucose again had little effect on the maturation of DO, although the percentage of maturing DO in HX-supplemented medium was about 20% lower than that in M16 medium. In the absence of glucose, high levels of maturation were observed in CEO in glutamine-free medium that were dose-dependently lowered by the amino acid. However, when glucose was present, CEO were as effectively arrested as DO when glutamine was absent, with no further effect of the amino acid. This inhibitory action of glucose was dependent on the essential amino acids present in MEM. The effects of glutamine were not due to changes in metabolic coupling between the oocyte and cumulus cells. Measurement of purine de novo synthesis indicated that the maintenance of meiotic arrest as well as FSH induction of meiotic resumption were associated with increases in purine synthesis. We conclude that glucose and glutamine act cooperatively to promote the synthesis of new purine compounds within the somatic compartment and that the timing and duration of such synthesis determines whether meiotic resumption will be suppressed or promoted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号