首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen (N) deposition (NDEP) drives forest carbon (C) sequestration but the size of this effect is still uncertain. In the field, an estimate of these effects can be obtained by applying mineral N fertilizers over the soil or forest canopy. A 15N label in the fertilizer can be then used to trace the movement of the added N into ecosystem pools and deduce a C effect. However, N recycling via litter decomposition provides most of the nutrition for trees, even under heavy NDEP inputs. If this recycled litter nitrogen is retained in ecosystem pools differently to added mineral N, then estimates of the effects of NDEP on the relative change in C (?C/?N) based on short‐term isotope‐labelled mineral fertilizer additions should be questioned. We used 15N labelled litter to track decomposed N in the soil system (litter, soils, microbes, and roots) over 18 months in a Sitka spruce plantation and directly compared the fate of this 15N to an equivalent amount in simulated NDEP treatments. By the end of the experiment, three times as much 15N was retained in the O and A soil layers when N was derived from litter decomposition than from mineral N additions (60% and 20%, respectively), primarily because of increased recovery in the O layer. Roots expressed slightly more 15N tracer from litter decomposition than from simulated mineral NDEP (7.5% and 4.5%) and compared to soil recovery, expressed proportionally more 15N in the A layer than the O layer, potentially indicating uptake of organic N from decomposition. These results suggest effects of NDEP on forest ?C/?N may not be apparent from mineral 15N tracer experiments alone. Given the importance of N recycling, an important but underestimated effect of NDEP is its influence on the rate of N release from litter.  相似文献   

2.
Although common bean (Phaseolus vulgaris L.) has good potential for N2 fixation, some additional N provided through fertilizer usually is required for a maximum yield. In this study the suppressive effect of N on nodulation and N2 fixation was evaluated in an unfertile soil under greenhouse conditions with different levels of soil fertility (low=no P, K and S additions; medium = 50, 63 and 10 mg kg–1 soil and high = 200, 256 and 40 mg kg–1 soil, respectively) and combined with 5, 15, 60 and 120 mg N kg–1 soil of 15N-labelled urea. The overall average nodule number and weight increased under high fertility levels. At low N applications, nitrogen had a synergistic effect on N2 fixation, by stimulating nodule formation, nitrogenase activity and plant growth. At high fertility and at the highest N rate (120 mg kg–1 soil), the stimulatory effect of N fertilizer on N2 fixation was still observed, increasing the amounts of N2 fixed from 88 up to 375 mg N plant–1. These results indicate that a suitable balance of soil nutrients is essential to obtain high N2 fixation rates and yield in common beans.  相似文献   

3.
Flooded paddy fields perform many ecological and conservation functions and are also reported to facilitate livestock waste disposal. Paddy field infiltration rates are important for nitrogen dynamics. A laboratory study was conducted to compare the effects of infiltration rate on nitrogen dynamics including nitrogen leaching, soil adsorption, microorganism assimilation, plant uptake and denitrification. Two infiltration rates were applied to paddy soil: 18.6 ± 10.3 mm d−1 (High Infiltration Columns: HIC) and 4.49 ± 3.15 mm d−1 (Low Infiltration Columns: LIC). Total nitrogen load was 484 kg-N ha−1, with the ammonium ion form including basal fertilizer and a double supplemental fertilizer application. A (15NH4)2SO4 tracer was applied in each infiltration rate as supplemental fertilizer.Nitrification and denitrification, plant uptake, soil adsorption, and leaching differed between infiltration rates. Compared with high nitrate concentration in HIC soil water, little nitrate appeared in the LIC, and it maintained relatively higher soil water ammonium concentrations long after application. The 15N assimilated by rice and contained in the LIC soil was higher than in the HIC, suggesting that low infiltration is beneficial to nitrogen assimilation, adsorption and fixation. Although loss of nitrogen via leaching was higher in the HIC than the LIC, it accounted for only 3.94% of total 15N input. About 69.4% of total 15N input was unaccounted for in the HIC, whereas 38.3% of total 15N input was unaccounted for in the LIC. According to the denitrification rate calculated from changes in 29N2/28N2 and 30N2/28N2 ratios, the denitrification rate after HIC application was higher than the LIC, reaching a maximum rate of 2.9 g m−2 d−1. This suggests that high infiltration rate enhances nitrification and denitrification, with most of the unaccounted inputted 15N in the HIC was probably lost through nitrification and denitrification.  相似文献   

4.
张雪  梅莉  宋利豪  刘力诚  赵泽尧 《生态学报》2019,39(6):1917-1925
以2年生马尾松(Pinus massoniana)盆栽苗土壤为对象,通过施氮肥模拟氮沉降对土壤理化性质、微生物群落结构及温室气体释放的影响,探明氮沉降对森林土壤温室气体释放的驱动机制。结果表明,模拟氮沉降处理显著提高了土壤速效氮含量和苗木根系氮含量;土壤微生物碳(SMBC)含量比对照显著下降78%,而土壤微生物氮(SMBN)则提高2.6倍。模拟氮沉降处理显著降低土壤中微生物群落总含量。施氮肥对马尾松土壤N_2O和CO_2的释放速率均有显著影响,增施氮肥不仅显著提高了土壤N_2O的释放速率,而且CO_2释放速率短期内也显著提高,但伴随微生物群落的下降,施肥后期CO_2释放速率表现下降趋势。相关分析表明,土壤CO_2和N_2O释放与土壤pH值、土壤温度、土壤湿度、土壤速效氮含量及SMBC、SMBN相关;逐步回归分析表明,土壤硝态氮含量的变化是驱动土壤温室气体释放的主导因子。3株种植单位土壤体积内根系生物量较高,增加了土壤水分的消耗速率和氮的吸收固定,因而减少N_2O的释放速率。以上研究阐明了氮沉降或过量施肥对土壤氮含量、土壤pH值、根系生物量及氮含量、土壤微生物群落结构等因子的影响,这些因子直接或间接影响土壤温室气体释放速率。氮沉降及施用氮肥是加快土壤温室气体(CO_2和N_2O)排放进程的重要因素。  相似文献   

5.
Summary Fertilizer/soil N balance of cropped and fallow soil has been studied in a pot experiment carried out with grey forest soil (southern part of Moscow region) at increasing rates of15N labelled ammonium sulfate (0; 8; 16; 32 mg N/100 g of soil). The fertilizer15N balance has been shown to depend upon its application rate and the presence of growing plants. Fertilizer N uptake efficiency was maximum (72.5%) and gaseous losses-minimum (12.5%) at the application rate of 16 mg N/100 g of soil. Fertilizer N losses from the fallow soil were 130–220% versus those from the cropped soil. At the application of fertilizer N the plant uptake of soil N was 170–240% and the amount of soil N as N–NH4 exchangeable + N–NO3 in fallow was 350–440% as compared to the control treatment without nitrogen (PK).After cropping without or with N fertilizer application at the rates of 8 and 32 mg N/100 g of soil, a positive nitrogen balance has been found which is likely due to nonsymbiotic (associative) N-fixation. It has been shown that biologically fixed nitrogen contributes to plant nutrition.  相似文献   

6.
Protein, amino acids and ammonium were the main forms of soluble soil nitrogen in the soil solution of a subtropical heathland (wallum). After fire, soil ammonium and nitrate increased 90- and 60-fold, respectively. Despite this increase in nitrate availability after fire, wallum species exhibited uniformly low nitrate reductase activities and low leaf and xylem nitrate. During waterlogging soil amino acids increased, particularly γ-aminobutyric acid (GABA) which accounted for over 50% of amino nitrogen. Non-mycorrhizal wallum species were significantly (P < 0.05) 15N-enriched (0.3–4.3‰) compared to species with mycorrhizal associations (ericoid-type, ecto-, va-mycorrhizal) which were strongly depleted in 15N (-6.3 to -1.8‰). Lignotubers and roots had δ15N signatures similar to that of the leaves of respective species. The exceptions were fine roots of ecto-, ecto/va-, and ericoid type mycorrhizal species which were enriched in 15N (0.1–2.4‰). The 515N signatures of δ15Ntotal soil N and δ15Nsoil NH4+ were in the range 3.7–4.5‰, whereas δ15Nsoil NO3? was significantly (P < 0.05) more enriched in 15N (9.2–9.8‰). It is proposed that there is discrimination against 15N during transfer of nitrogen from fungal to plant partner. Roots of selected species incorporated nitrogen sources in the order of preference: ammonium > glycine > nitrate. The exception were proteoid roots of Hakea (Proteaceae) which incorporated equal amounts of glycine and ammonium.  相似文献   

7.
The fate of15N labeled nitrogen applied to mature citrus trees   总被引:1,自引:0,他引:1  
Summary The efficiency and balance of nitrogen from one year's application was studied in a long-term fertigation experiment. Enriched nitrogen fertilizer, K15NO3, was applied to a 22-year-old Shamouti orange tree with a history of high N applications (N3) and to an N-starved tree (N1). The distribution of N in the different parts of the trees and in the soil was determined after the experimental trees were excavated. Similar total recovery of the labeled fertilizer N was found in the trees and soil in both treatments (N1−61.7% N3−56%). However, the distribution between tree and soil was different. The amount of recovered residual fertilizer in the soil was much larger in the N3 treatment than in N1. The highest percentage of fertilizer N was found in the new organs,i.e. fruits, twigs and leaves. The roots and branches took up only 6–14% from the labeled fertilizer. Only 20.9% of the leaf N and 23.4% of the fruit N in the N3 tree originated in the labeled fertilizer, indicating translocation of N from older parts of the tree to new growth. Evidence was found of storage of N in the wooded branches, while the roots contained a surprisingly small part of labeled fertilizer. Contribution 1599E.  相似文献   

8.
Summary Isotopic as well as non-isotopic methods were used to assess symbiotic nitrogen fixation within eight soybean [Glycine max (L.) Merr.] cultivars grown at 20 and 100 kg N/ha levels of nitrogen fertilizer under field conditions.The15N methodology revealed large differences between soybean cultivars in their abilities to support nitrogen fixation. In almost all cases, the application of 100 kg N/ha resulted in lower N2 fixed in soybean than at 20 kg N/ha in the first year of the study. However, N2 fixed in one cultivar, Dunadja, was not significantly affected by the higher rate of N fertilizer application. These results were confirmed by measurements of acetylene reduction activity, nodule dry weight and N2 fixed as measured by the difference method. Further proof of differences in N2 fixed within soybean cultivars and the ability of Dunadja to fix similar amounts of N2 at 20 and 100 kg N/ha was obtained during a second year experiment. Dunadja yield was affected by N fertilizer and produced larger yield at 100 kg N/ha than at 20 kg N/ha. This type of cultivar could be particularly useful in situations where soil N levels are high or where there is need to apply high amounts of N fertilizer.The present study reveals the great variability between legume germplasms in the ability to fix N2 at different inorganic N levels, and also the potential that exists in breeding for nitrogen fixation associative traits. The15N methodology offers a unique tool to evaluate germplasms directly in the field for their N2 fixation abilities at different N fertilizer levels.  相似文献   

9.
Summary Five crops of oats were grown over a 14-month period on a Chester silt loam soil fertilized with N15-labelled (NH4)2SO4. All plant material from the first four crops was returned to the soil. Following a fifth crop, oat tops and roots were harvested, and the soil was subjected to repeated extractions by autoclaving in 0.01M CaCl2. The distribution of N15 and of indigenous soil N among chemical fractions of the extracts, and in the acid-soluble and acid-soluble and acid-insoluble portions of the soil residues following 0.01M CaCl2 extraction, was remarkably similar. Since appreciable equilibrations between added N15 and the more resistant forms of soil organic N is unlikely, it is postulated that fertilizer N became incorporated in newly-formed complexes, similar to those already present in the soil. This view is in harmony with the finding that percentage removals of total and N15-labelled N remained almost the same, even with recovery of approximately 55 per cent of the amounts originally present. N mineralization capacity of the soil was reduced appreciably as a result of extraction.  相似文献   

10.
Summary Six pasture grasses,Paspalum notatum cv batatais,P. notatum cv pensacola,Brachiaria radicans, B. ruziziensis, B. decumbens andB. humidicola, were grown in concrete cylinders (60 cm diameter) in the field for 31 months. The soil was amended with either a single addition of15N labelled organic matter or frequent small (2 kg N. ha–1) additions of15N enriched (NH4)2SO4. In the labelled fertilizer treatment soil analysis revealed that there was a very drastic change in15N enrichment in plant-available nitrogen (NO 3 +NH 4 + ) with depth. The different grass cultivars recovered different quantities of applied labelled N, and evidence was obtained to suggest that the roots exploited the soil to different depths thus obtaining different15N enrichments in soil derived N. This invalidated the application of the isotope dilution technique to estimate the contribution of nitrogen fixation to the grass cultivars in this treatment. In the labelled organic matter treatment the15N label in the plant-available N declined at a decreasing rate during the experiment until in the last 12 months the decrease was only from 0.274 to 0.222 atom % excess. There was little change in15N enrichment of available N with depth, hence it was concluded that although the grasses recovered different quantities of labelled N, they all obtained virtually the same15N enrichment in soil derived N. Data from the final harvests of this treatment indicated thatB. humidicola andB. decumbens obtained 30 and 40% respectively of their nitrogen from N2 fixation amounting to an input of 30 and 45 kg N.ha–1 year–1 respectively.  相似文献   

11.
干旱胁迫下胡杨实生幼苗氮素吸收分配与利用   总被引:5,自引:0,他引:5  
马晓东  钟小莉  桑钰 《生态学报》2018,38(20):7508-7519
胡杨(Populus euphratica)是塔里木河流域荒漠河岸林的建群种,水分和氮素是限制胡杨幼苗的存活及早期生长的主要因子。利用~(15)N同位素示踪技术分析水和氮素的交互作用对胡杨幼苗不同生长阶段氮素的吸收分配利用及幼苗生长的影响,进一步探究氮素对胡杨实生苗早期形态建成的作用及对干旱胁迫的缓解效应,以期提高幼苗的存活率。实验以一年生胡杨实生幼苗为研究对象,采用温室内盆栽实验,设置4个干旱处理(D_1、D_2、D_3、D_4,土壤相对含水量为:20%—25%、40%—45%、60%—65%、80%—85%)和3种氮素水平(N_0、N_1、N_2:0、3、6 g/盆)测定胡杨幼苗的生长指标和各部分的Ndff、分配率及利用率。结果表明:胡杨幼苗在土壤相对含水量60%—65%(D_3)、氮素添加量3 g/盆(N_1)时,其生长表现为最佳状态;干旱胁迫下,不同氮素添加量对胡杨幼苗各部分的Ndff值存在显著差异,N_2低于N_1;随干旱胁迫减弱(D_3、D_4),植株在生长早期(25 d)根部吸收的~(15)N优先向地上部分转运,生长后期(75 d)植株Ndff最高,其中以根系中Ndff最高;不同生长期幼苗各部分的~(15)N分配存在显著差异,根系~(15)N分配率较高,但不同氮量处理间差异不显著;随生长期的推移,植株对~(15)NH_4~(15)NO_3的利用率表现为粗根最大,各处理中D_3N_1处理均显著高于其他处理。结论:轻度干旱胁迫下添加适量的氮素能够增强植株对氮素的吸收征调能力,优化水资源获取以维持生存的重要机制。  相似文献   

12.
Nitrogen catch crops are grown to absorb nitrogen from the rooting zone during autumn and winter. The uptake of N (Nupt) from the soil inorganic N pool (Nmin) to a pool of catch crop nitrogen, will protect the nitrogen against leaching. After incorporation, a fraction (m) of the catch crop nitrogen is mineralized and becomes available again. However, not all available nitrogen present in the soil in the autumn is lost by leaching during winter. A fraction (r) of the nitrogen absorbed by the catch crop would, without a catch crop, have been retained within the rooting zone. The first year nitrogen beneficial effect (Neff) of a catch crop may then be expressed b N eff = m*N upt - r* N upt The soil-plant simulation model DAISY was evaluated for its ability to simulate the effects of catch crops on spring Nmin and Neff. Based on incubation studies, parameter values were assigned to a number of catch crop materials, and these parameter values were then used to simulate spring Nmin. The model was able to predict much of the vairiation in the measured spring Nmin (r2 = 0.48***) and there was good agreement between the measured and the simulated effect of winter precipitation on spring Nmin and Neff.Scenarios including variable soil and climate conditions, and variable root depth of the succeeding crop were simulated. It is illustrated that the effect of catch crops on nitrogen availability for the succeeding crop depends strongly on the rooting depth of the succeeding crop. If the succeeding crop is deep rooted and the leaching intensity is low, there is a high risk that a catch crop will have a negative effect on nitrogen availability. The simulations showed that the strategy for the growing of catch crops should be adapted to the actual situation, especially to the expected leaching intensity and to the rooting depth of the succeeding crop.  相似文献   

13.
Legume-based cropping systems have the potential to internally regulate N cycling due to the suppressive effect of soil N availability on biological nitrogen fixation. We used a gradient of endogenous soil N levels resulting from different management legacies and soil textures to investigate the effects of soil organic matter dynamics and N availability on soybean (Glycine max) N2 fixation. Soybean N2 fixation was estimated on 13 grain farm fields in central New York State by the 15N natural abundance method using a non-nodulating soybean reference. A range of soil N fractions were measured to span the continuum from labile to more recalcitrant N pools. Soybean reliance on N2 fixation ranged from 36% to 82% and total N2 fixed in aboveground biomass ranged from 40 to 224 kg N ha?1. Soil N pools were consistently inversely correlated with % N from fixation and the correlation was statistically significant for inorganic N and occluded particulate organic matter N. However, we also found that soil N uptake by N2-fixing soybeans relative to the non-nodulating isoline increased as soil N decreased, suggesting that N2 fixation increased soil N scavenging in low fertility fields. We found weak evidence for internal regulation of N2 fixation, because the inhibitory effects of soil N availability were secondary to the environmental and site characteristics, such as soil texture and corresponding soil characteristics that vary with texture, which affected soybean biomass, total N2 fixation, and net N balance.  相似文献   

14.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   

15.
Within a long-term research project studying the biogeochemical budget of an oak-beech forest ecosystem in the eastern part of the Netherlands, the nitrogen transformations and solute fluxes were determined in order to trace the fate of atmospherically deposited NH4 + and to determine the contribution of nitrogen transformations to soil acidification.The oak-beech forest studied received an annual input of nitrogen via throughfall and stemflow of 45 kg N ha–1 yr–1, mainly as NH4 +, whereas 8 kg N ha–1 yr–1 was taken up by the canopy. Due to the specific hydrological regime resulting in periodically occurring high groundwater levels, denitrification was found to be the dominant output flux (35 kg N ha–1 yr–1). N20 emmission rate measurements indicated that 57% of this gaseous nitrogen loss (20 kg N ha–1 yr–1) was as N2O. The forest lost an annual amount of 11 kg N ha–1 yr–1 via streamwater output, mainly as N03 .Despite the acid conditions, high nitrification rates were measured. Nitrification occurred mainly in the litter layer and in the organic rich part of the mineral soil and was found to be closely correlated with soil temperature. The large amount of NH4 + deposited on the forest floor via atmospheric deposition and produced by mineralization was to a large extent nitrified in the litter layer. Almost no NH4 + reached the subsurface soil horizons. The N03 was retained, taken up or transformed mainly in the mineral soil. A small amount of N03 (9 kg N ha–1 yr–1) was removed from the system in streamwater output. A relatively small amount of nitrogen was measured in the soil water as Dissolved Organic Nitrogen.On the basis of these data the proton budget of the system was calculated using two different approaches. In both cases net proton production rates were high in the vegetation and in the litter layer of the forest ecosystem. Nitrogen transformations induced a net proton production rate of 2.4 kmol ha–1 yr–1 in the soil compartment.  相似文献   

16.
Summary 15N tracer was used to detect the extent to which nitrogen of appliedAzolla caroliniana, Anabaena variabilis andNostoc muscorum was available for assimilation by the growing rice plants in pots under 4 cm flood water for 60 days. The rate of release of nitrogen from the above biofertilizers, the amount of nitrogen remaining in the soils and the amount that was lost from the soils during this period were also examined. Previously15N-labelled biomass of Azolla, Anabaena and Nostoc to provide 40 mg N was mixed thoroughly with 0.5 kg silt loam Bangladesh soil (Sonatola series) in each of three pots used for a single treatment. Each pot received four 16 days old IR8 rice seedlings. A parallet set of experiments was conducted without rice plants.It was found that nitrogen uptake in the rice plants was increased by 91, 176 and 215% on using Azolla, Anabaena and Nostoc which resulted in increased total dry matter yields (shoot plus root) of 74, 105 and 125%, respectively. Of the total15N applied at the start, 26, 49 and 53% was released from Azolla, Anabaena and Nostoc; about 7, 14 and 13% was lost by denitrification and 74, 51 and 47% remained in the soils as the undecomposed part of the biofertilizers, respeciively, after 60 days. Of 15.76, 22.72 and 25.92 mg N assimilated by the rice plants, 48, 61 and 62% was supplied by Azolla, Anabaena and Nostoc, respectively. The rest was obtained from the soil used.In the absence of the rice plants 30, 43 and 45% of applied15N of Azolla, Anabaena and Nostoc was released, respectively, in 60 days of which 93–96% was lost as N2 through denitrification.  相似文献   

17.
Summary Lucerne is an important forage legume in the south and south-east of Sweden on well-drained soils. However, data is lacking on the apparent amount of nitrogen derived through N2 fixation by field-grown lucerne. This report provides basic information on the subject. The experiment was performed in a lucerne ley grown 40 km north of Uppsala. The input of nitrogen through fixation to the above-ground plant material of an established lucerne (Medicago sativa L.) ley was estimate by15N methodology during two successive years. The amount of fixed N was 242 kg N ha–1 in 1982 and 319 kg N ha–1 in 1983. The proportion of N derived from the atmosphere (%Ndfa) was 70% and 80% for the two years respectively. The first harvest in both years contained a lower proportion fixed N. Both N2 fixation and dry matter production were enhanced during the second year, particularly in the first harvest. The Ndfa was 61% in the first harvest in 1982, compared to 72% Ndfa during the same period in 1983. This demonstrates the strong influence of environment on both dry matter production and N2 fixation capacity of the lucerne.In addition anin situ acetylene reduction assay was used in 1982 to measure the seasonal distribution of the N2 fixation and in 1983 to study the effect of soil moisture on the N2 fixation process. The seasonal pattern showed great dependence on physiological development and harvest pattern of the lucerne ley. The maximum rate of N2 fixation occurred at the bud or early flower stage of growth and was followed by a rapid decline as flowering proceeded. After harvest the nitrogenase activity markedly decreased and remained low during at least two weeks until regrowth of new shoots began. Irrigation doubled the nitrogenase activity of the lucerne in late summer 1983, when soil moisture content in the top soil was near wilting point. No changes in nitrogenase activity did occur in response to watering earlier during the summer, when the soil matric potential was around –0.30 MPa.  相似文献   

18.
在森林土壤中,无机氮的垂直移动速率较快,因此大气氮沉降极有可能对下层森林土壤造成较大影响,且表层土壤往往与下层土壤的物理化学特性和所处环境差异较大,因此土壤剖面中不同深度的土壤对大气氮沉降的响应可能存在较大差异。以往研究表明,"华西雨屏"区的年均氮湿沉降量高达95 kg N hm-2 a-1,处于中国最高水平,该森林生态系统出现一定氮饱和特征。基于以上背景,研究华西雨屏区常绿阔叶林不同深度土壤氮矿化及相关酶活性对模拟氮沉降的响应,从2014年1月起进行野外定位模拟氮沉降试验,分别设置对照(CK,+0 g N hm-2 a-1)、低氮(LN,+5 g N hm-2 a-1)和高氮(HN,+15 g N hm-2 a-1)3个氮添加水平。在氮沉降进行5年后进行土壤采样,测定不同深度土壤(上层0-15 cm、中层15-30 cm、下层30-45 cm)全氮(TN)、硝态氮(NO3--N)、铵态氮(NH4+-N)含量及氮矿化相关酶活性。结果表明:(1)该常绿阔叶次生林不同深度土壤TN有显著差异;(2)模拟氮沉降对该系统土壤氮矿化总体表现出极显著抑制作用,其中中层土壤抑制作用最为强烈,净氮矿化速率主要受硝化过程的影响;(3)氮矿化相关酶活性均随土壤深度的加深而降低,模拟氮沉降对土壤脲酶活性有极显著促进作用,对土壤硝酸还原酶活性有显著抑制作用。由于无机氮在土壤剖面中的高度可移动性,深层土壤氮循环和特征对氮沉降的响应需要更加密切的关注。  相似文献   

19.
Positive effects of legumes and actinorhizal plants on N-poor soils have been observed in many studies but few have been done at high latitudes, which was the location of our study. We measured N2 fixation and several indices of soil N at a site near the Arctic Circle in northern Sweden. More than 20 years ago lupine (Lupinus nootkatensis Donn) and gray alder (Alnus incana L. Moench) were planted on this degraded forest site. We measured total soil N, net N mineralization and nitrification with a buried bag technique, and fluxes of NH+ 4 and NO 3 as collected on ion exchange membranes. We also estimated N2 fixation activity of the N2-fixing plants by the natural abundance of 15N of leaves with Betula pendula Roth. as reference species. Foliar nitrogen in the N2-fixing plants was almost totally derived from N2 fixation. Plots containing N2-fixing species generally had significantly higher soil N and N availability than a control plot without N2-fixing plants. Taken together, all measurements indicated that N2-fixing plants can be used to effectively improve soil fertility at high latitudes in northern Sweden.  相似文献   

20.
Nitrogen stable isotopes (δ15N) of dissolved inorganic nitrogen (DIN = NH4+ and NO3), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) were measured in Smith Lake, Alaska to assess their usefulness as proxies for the biological nitrogen cycling processes, nutrient concentration, and lake productivity. Large seasonal variations in δ15NH4+, δ15NO3 and δ15NPON occurred in response to different processes of nitrogen transformation that dominated a specific time period of the annual production cycle. In spring, 15N depletion in all three pools was closely related to the occurrences of a N2‐fixing cyanobacterial bloom (Anabaena flos‐aquae). In summer, δ15NPON increased as phytoplankton community shifted to use NH4+ and decreased as a brief N2‐fixing bloom (Aphanizomenon flos‐aquae) occurred in August. In early and mid‐winter, microbial nitrogen processes were dominated by nitrification that resulted in the largest isotope fractionation between NO3 and NH4+ in the annual cycle. This was followed by denitrification that led to the highest 15N enrichment in NO3. A peak of NH4+ assimilation by phytoplankton along with the elevated δ15NPON and Chl a concentration occurred just before the ice break due to increased light penetration. The δ15NDON displayed little temporal and spatial variations. This suggests that the DON pool was not altered by biological transformations of nitrogen as the results of its large size and possibly refractory nature. There was a positive correlation between Chl a concentration and δ15NPON, and a negative correlation between NH4+ and δ15NPON, suggesting that δ15NPON is a useful proxy for nitrogen productivity and ammonium concentration. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号