首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The last stage of the adenovirus replication cycle, lysis, is considered not very efficient and remains poorly understood. Pathogen infection induces autophagy in eukaryotic cells. In the case of viruses, autophagy is a double-edged sword that can either facilitate or impede replication. On one hand, autophagy reduces the replication capability of the herpesviruses. On the other hand, the RNA virus poliovirus uses autophagosomes to form replication complexes. Recently we characterized the autophagy induced by the oncolytic adenovirus Delta-24-RGD in brain tumor stem cells. Late in the adenoviral infectious cycle, we observed remarkable upregulation of the Atg12-Atg5 complex and prominent autophagy. In addition, adenovirus-induced autophagy results in disruption of the cytoplasmic structure and the continuity of the cellular membrane. We speculate that adenoviruses induce autophagy to facilitate the release of viral progeny at the end of the infectious cycle. The substitution of 'autophagy' for 'lysis' is not just semantic. Because autophagy is a genetically programmed process and not a passive phenomenon, it immediately suggests interactions between adenovirus proteins and autophagy regulators. Understanding the mechanism underlying adenovirus-mediated autophagy should propel the development of novel vectors with enhanced capability to release viral progeny and, as a result, morepotent oncolytic effect.  相似文献   

2.
In the present study, we demonstrate an audiotactile effect in which amplitude modulation of auditory feedback during voiced speech induces a throbbing sensation over the lip and laryngeal regions. Control tasks coupled with the examination of speech acoustic parameters allow us to rule out the possibility that the effect may have been due to cognitive factors or motor compensatory effects. We interpret the effect as reflecting the tight interplay between auditory and tactile modalities during vocal production.  相似文献   

3.
Just say NO     
  相似文献   

4.
5.
Douglas Waugh 《CMAJ》1996,154(3):386
  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Skeletal muscles are commonly exposed to radiation for diagnostic procedures and the treatment of cancers and heterotopic bone formation. Few studies have considered the impact of clinical doses of radiation on the ability of satellite cells (myogenic stem cells) to proliferate, differentiate and contribute to recovering/maintaining muscle mass. The primary objective of this study was to determine whether the proliferation of irradiated satellite cells could be rescued by manipulating NO levels via pharmacological approaches and mechanical stretch (which is known to increase NO levels). We used both SNP (NO donor) and PTIO (NO scavenger) to manipulate NO levels in satellite cells. We observed that SNP was highly effective in rescuing the proliferation of irradiated satellite cells, especially at doses less than 5 Gy. The potential importance of NO was further illustrated by the effects of PTIO, which completely inhibited the rescue effect of SNP. Mechanical cyclic stretch was found to produce significant increases in NO levels of irradiated satellite cells, and this was associated with a robust increase in satellite cell proliferation. The effects of both radiation and NO on two key myogenic regulatory factors (MyoD and myogenin) were also explored. Irradiation of satellite cells produced a significant increase in both MyoD and myogenin, effects that were mitigated by manipulating NO levels via SNP. Given the central role of myogenic regulatory factors in the proliferation and differentiation of satellite cells, the findings of the current study underscore the need to more fully understand the relationship between radiation, NO and the functionality of satellite cells.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号