首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genetic regulation of osteoclast development and function   总被引:2,自引:0,他引:2  
Osteoclasts are the principal, if not exclusive, bone-resorbing cells, and their activity has a profound impact on skeletal health. So, disorders of skeletal insufficiency, such as osteoporosis, typically represent enhanced osteoclastic bone resorption relative to bone formation. Prevention of pathological bone loss therefore depends on an appreciation of the mechanisms by which osteoclasts differentiate from their precursors and degrade the skeleton. The past five years have witnessed important insights into osteoclast formation and function. Many of these discoveries have been made through genetic experiments that involved the rare hereditary disorder osteopetrosis.  相似文献   

3.
4.
The osteoclast is unique in its capacity to resorb bone. An unbalanced increase in this activity causes osteoporosis, a crippling bone disease that poses a major public health problem. Despite this, our understanding of osteoclast regulation is very limited. Calcitonin is the only known physiological inhibitor of osteoclast function. We demonstrate here for the first time that the concentration of calcium ions at the resorptive site directly regulates osteoclast function by modulating the intracellular free calcium concentration. This represents an important feedback mechanism of osteoclast control.  相似文献   

5.
The molecular and physiological mechanisms of control of osteoclast formation and activity have been explained with the discovery of three members of the Tumour Necrosis Factor superfamily. Receptor activator of NF-kappaB ligand (RANKL) is the type II membrane protein in cells of the osteoblastic lineage which interacts with its receptor, RANK, on hemopoietic precursors to promote osteoclast formation and maintain their viability and activity. The process is further regulated by the decoy receptor, osteoprotegerin (OPG), also produced by stromal/osteoblastic cells, and which binds to RANKL to prevent RANKL stimulation of osteoclast formation. These discoveries fulfilled predictions that came from more than 20 years of research in bone cell biology in predominantly rodent systems. The hypothesis that the osteoblast lineage directed osteoclast function introduced the concept of intercellular communication in bone. It needed new methods to be developed to test it, and there were many who contributed to this. With a number of identifiable milestones from the early 1980s on, a highly convincing case was made for the existence of what turned out to be RANKL and RANK. As it happened, OPG came first, and the background biological information was so instructive that it was obvious that OPG would lead to the final answer. By that stage the necessary methods were all in place, and in a short time all the key molecular regulators were identified. Ultimate proof of their physiological importance came from genetic experiments in mice.  相似文献   

6.
The present study demonstrates that loss of cell adhesion potently promotes apoptosis in osteoclasts, a process termed "anoikis." When purified mature rabbit osteoclasts were cultured on plastic for 18 h, about 25% of them were spontaneously committed to apoptosis. The death rate increased more than twofold, after osteoclasts were subjected to suspension culture in inverted Terasaki plates. The osteoclast anoikis was significantly prevented by bongkrekic acid, an inhibitor of mitochondrial permeability transition (PT), and z-VAD-FMK, a caspase inhibitor, suggesting involvement of mitochondrial PT and caspase activation in the death process. Colony-stimulating factor-1 (CSF-1), receptor activator of NF-kappaB ligand (RANKL), and calcitonin protected adherent osteoclasts, but not floating osteoclasts from anoikis. These data show that adhesion is a primary requirement for osteoclast survival.  相似文献   

7.
Chemokines play an important role in immune and inflammatory responses by inducing migration and adhesion of leukocytes, and have also been reported to modulate osteoclast differentiation from hemopoietic precursor cells of the monocyte-macrophage lineage. In this study, we examined the effect of MIP-1 gamma, a C-C chemokine family member, on receptor activator of NF-kappa B ligand (RANKL)-stimulated osteoclast differentiation, survival, and activation. RANKL induced osteoclasts to dramatically increase production of MIP-1 gamma and to also express the MIP-1 gamma receptor CCR1, but had only minor effects on the related C-C chemokines MIP-1 alpha and RANTES. Neutralization of MIP-1 gamma with specific Ab reduced RANKL-stimulated osteoclast differentiation by 60-70%. Mature osteoclasts underwent apoptosis within 24 h after removal of RANKL, as shown by increased caspase 3 activity and DNA fragmentation. Apoptosis was reduced by the addition of exogenous MIP-1 gamma or RANKL, both of which increased NF-kappa B activation in osteoclasts. Neutralization studies showed that the prosurvival effect of RANKL was in part dependent on its ability to induce MIP-1 gamma. Finally, osteoclast activation for bone resorption was stimulated by MIP-1 gamma. Taken together, these results demonstrate that MIP-1 gamma plays an important role in the differentiation and survival of osteoclasts, most likely via an autocrine pathway.  相似文献   

8.

Background  

Gelsolin, an actin capping protein of osteoclast podosomes, has a unique function in regulating assembly and disassembly of the podosome actin filament. Previously, we have reported that osteopontin (OPN) binding to integrin αvβ3 increased the levels of gelsolin-associated polyphosphoinositides, podosome assembly/disassembly, and actin filament formation. The present study was undertaken to identify the possible role of polyphosphoinositides and phosphoinositides binding domains (PBDs) of gelsolin in the osteoclast cytoskeletal structural organization and osteoclast function.  相似文献   

9.
Osteoclasts are sensitive to KCl-induced depolarization and to increased extracellular calcium concentration, and respond to these treatments with cytosolic calcium increase. In this study we evaluated the possibility that these experimental conditions could affect osteoclast bone resorption. We found that, incubating osteoclasts with 3H-proline previously labeled bone particles the resorbing activity was inhibited by both depolarization and extracellular calcium concentration increase. The released radioactivity was, in fact, 48% and 52% respectively compared to the untreated cultures. These data demonstrated that cytosolic calcium increase is one of the messengers of the pathway that inhibits, in this condition, bone resorption. Furthermore, as in parathyroid cells, extracellular calcium acts with a negative direct feedback mechanism that controls osteoclast activity.  相似文献   

10.
11.
12.
Patients with pycnodysostosis, a rare skeletal dysplasia, present with bone abnormalities such as short stature, acroosteolysis of distal phalanges, and skull deformities. The disease is caused by a deficiency of the cysteine protease cathepsin K which is responsible for degradation of collagen type I and other bone proteins. Osteoclasts, bone cells of hematopoietic origin responsible for bone mineral as well as protein matrix degradation, are dysfunctional in patients with pycnodysostosis due to mutations in the cathepsin K gene. Cathepsin K deficient osteoclasts can demineralize bone but cannot degrade the protein matrix. Mutations in the cathepsin K gene disrupting wild type cathepsin K activity have been described in patients with pycnodysostosis. Animal models of cathepsin K deficiency have been created and provide a valuable tool to study osteoclast function and treatment for cathepsin K deficiency. Understanding the regulation and role of cathepsin K in osteoclast function is important for designing future therapies for pycnodysostosis. Cathepsin K inhibitors will be useful in pathological processes involving excess osteoclast activation and bone resorption such as osteoporosis, bone metastasis and multiple myeloma. This review will discuss the bone remodeling cycle, the human disease pycnodysostosis caused by cathepsin K deficiency and cathepsin K activity and regulation.  相似文献   

13.
Nitric oxide has been shown to play an important role in regulation of bone resorption. However, the role of endogenous nitric oxide on osteoclast activity remains still controversial. In this work, using RT-PCR amplification, we demonstrated that rabbit mature osteoclasts express mRNA encoding for neuronal nitric oxide synthase suggesting that this enzyme could be involved in basal nitric oxide production in these cells. Then we assessed the effect of carboxy-PTIO, a nitric oxide scavenger, on in vitro bone resorption and osteoclast survival. Carboxy-PTIO (10-100 microM) inhibited osteoclastic bone resorption in a dose dependent manner and induced osteoclast apoptosis by a mechanism involving caspase 3 activation. These results suggest that basal concentration of endogenous nitric oxide may be essential for normal bone resorption by supporting osteoclast survival. Because osteoclasts express N-methyl-d-aspartate-receptor (NMDA-R), we hypothesized that in osteoclasts NMDA-R may be involved in nitric oxide production as in neuronal cells. We confirmed that blockade of NMDA-R with specific non-competitive antagonists, MK801 and DEP, strongly inhibited bone resorption. As for carboxy-PTIO, we showed that blockade of NMDA-R by both antagonists induced osteoclast apoptosis in a dose dependent manner by a mechanism dependent on caspase 3 activation. Intracellular calcium concentration in osteoclasts decreased within minutes in the presence of both antagonists. Finally, MK801-induced osteoclast apoptosis was partially reversed in the presence of small amount of SNAP (100 nM), a nitric oxide donor, suggesting that the effect of NMDA-R on osteoclast apoptotic cell death could be due to a decrease in nitric oxide production. Taken together, our results are consistent with the hypothesis that NMDA-R on osteoclasts could have a similar function as those in neuronal cells, i.e., to allow a calcium influx, which in turn activates a constitutive neuronal nitric oxide synthase. Nitric oxide generated by this pathway may be essential for osteoclast survival and hence for normal bone resorption.  相似文献   

14.
In the ageing skeleton, the balance of bone reconstruction could commonly be broken by the increasing of bone resorption and decreasing of bone formation. Consequently, the bone resorption gradually occupies a dominant status. During this imbalance process, osteoclast is unique cell linage act the bone resorptive biological activity, which is a highly differentiated ultimate cell derived from monocyte/macrophage. The erosive function of osteoclasts is that they have to adhere the bone matrix and migrate along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In that, the podosome is a membrane binding microdomain organelle, based on dynamic actin, which forms a cytoskeleton superstructure connected with the plasma membrane. Otherwise, as the main adhesive protein, integrin regulates the formation of podosome and cytoskeleton, which collaborates with the various molecules including: c-Cbl, p130Cas, c-Src and Pyk2, through several signalling cascades cross talking, including: M-CSF and RANKL. In our current study, we discuss the role of integrin and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, regulation and relevant signalling cascades cross talking.  相似文献   

15.
16.
The osteoblast is the bone forming cell and is derived from mesenchymal stem cells (MSC) present among the bone marrow stroma. MSC are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts and adipocytes. Understanding the mechanisms underlying osteoblast differentiation from MSC is a central topic in bone biology that can provide insight into mechanisms of bone maintenance and also novel pharmacological targets to increase osteoblast differentiation and consequently bone formation.  相似文献   

17.
Interleukin-3 (IL-3) is produced under various pathological conditions and is thought to be involved in the pathogenesis of inflammatory diseases; however, its function in bone homeostasis under normal conditions or nature of the downstream molecular targets remains unknown. Here we examined the effect of IL-3 on osteoclast differentiation from mouse and human bone marrow-derived macrophages (BMMs). Although IL-3 can induce osteoclast differentiation of multiple myeloma bone marrow cells, IL-3 greatly inhibited osteoclast differentiation of human BMMs isolated from healthy donors. These inhibitory effects of IL-3 were only observed at early time points (days 0 and 1). IL-3 inhibited the expression of c-Fos and NFATc1 in BMMs treated with RANKL. However, IL-3-mediated inhibition of osteoclast differentiation was not completely reversed by ectopic expression of c-Fos or NFATc1. Importantly, IL-3 induced inhibitor of DNA binding/differentiation (Id)1 in hBMMs, while Id2 were sustained during osteoclast differentiation of mBMMs treated with IL-3. Ectopic expression of NFATc1 in Id2-deficient BMMs completely reversed the inhibitory effect of IL-3 on osteoclast differentiation. Furthermore, inflammation-induced bone erosion was markedly inhibited by IL-3 administration. Taken together, our results suggest that IL-3 plays an inhibitory role in osteoclast differentiation by regulating c-Fos and Ids, and also exerts anti-bone erosion effects.  相似文献   

18.
Src‐like adaptor protein (SLAP) is a hematopoietic adaptor containing Src homology (SH)3 and SH2 motifs and a unique carboxy terminus. Unlike c‐Src, SLAP lacks a tyrosine kinase domain. We investigated the role of SLAP in osteoclast development and resorptive function. Employing SLAP‐deficient mice, we find lack of the adaptor enhances in vitro proliferation of osteoclast precursors in the form of bone marrow macrophages (BMMs), without altering their survival. Furthermore, osteoclastogenic markers appear more rapidly in SLAP?/? BMMs exposed to RANK ligand (RANKL). The accelerated proliferation of M‐CSF‐treated, SLAP‐deficient precursors is associated with enhanced ERK activation. SLAP's role as a mediator of M‐CSF signaling, in osteoclastic cells, is buttressed by complexing of the adaptor protein and c‐Fms in lipid rafts. Unlike c‐Src, SLAP does not impact resorptive function of mature osteoclasts but induces their early apoptosis. Thus, SLAP negatively regulates differentiation of osteoclasts and proliferation of their precursors. Conversely, SLAP decreases osteoclast death by inhibiting activation of caspase 3. These counterbalancing events yield indistinguishable bones of WT and SLAP?/? mice which contain equal numbers of osteoclasts in basal and stimulated conditions. J. Cell. Biochem. 110: 201–209, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Osteoclasts are multinucleated cells that play a crucial role in bone resorption, and are formed by the fusion of mononuclear osteoclasts derived from osteoclast precursors of the macrophage lineage. Compounds that specifically target functional osteoclasts would be ideal candidates for anti-resorptive agents for clinical applications. In the present study, we investigated the effects of luteolin, a flavonoid, on the regulation of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, functions and signaling pathway. Addition of luteolin to a coculture system of mouse bone marrow cells and ST2 cells in the presence of 10−8 M 1α,25(OH)2D3 caused significant inhibition of osteoclastogenesis. Luteolin had no effects on the 1α,25(OH)2D3-induced expressions of RANKL, osteoprotegerin and macrophage colony-stimulating factor mRNAs. Next, we examined the direct effects of luteolin on osteoclast precursors using bone marrow macrophages and RAW264.7 cells. Luteolin completely inhibited RANKL-induced osteoclast formation. Moreover, luteolin inhibited the bone resorption by mature osteoclasts accompanied by the disruption of their actin rings, and these effects were reversely induced by the disruption of the actin rings in mature osteoclasts. Finally, we found that luteolin inhibited RANKL-induced osteoclastogenesis through the suppression of ATF2, downstream of p38 MAPK and nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) expression, respectively. Taken together, the present results indicate that naturally occurring luteolin has inhibitory activities toward both osteoclast differentiation and functions through inhibition of RANKL-induced signaling pathway as well as actin ring disruption, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号