首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rap1, a mercenary among the Ras-like GTPases   总被引:1,自引:0,他引:1  
The small Ras-like GTPase Rap1 is an evolutionary conserved protein that originally gained interest because of its capacity to revert the morphological phenotype of Ras-transformed fibroblasts. Rap1 is regulated by a large number of stimuli that include growth factors and cytokines, but also physical force and osmotic stress. Downstream of Rap1, a plethora of effector molecules has been proposed on the basis of biochemical studies. Here, we present an overview of genetic studies on Rap1 in various model organisms and relate the observed phenotypes to in vitro studies. The picture that emerges is one in which Rap1 is a versatile regulator of morphogenesis, by regulating diverse processes that include establishment of cellular polarity, cell-matrix interactions and cell-cell adhesion. Surprisingly, genetic experiments indicate that in the various model organisms, Rap1 uses distinct effector molecules that impinge upon the actin cytoskeleton and adhesion molecules.  相似文献   

2.
The Ras-like family of small GTPases includes, among others, Ras, Rap1, R-ras, and Ral. The family is characterized by similarities in the effector domain. While the function of Ras is, at least in part, elucidated, little is known about other members of the family. Currently, much attention is focused on the small GTPase Rap1. Initially, this member was identified as a transformation suppressor protein able to revert the morphological phenotype of Ras-transformed fibroblasts. This has led to the hypothesis that Rap1 antagonizes Ras by interfering in Ras effector function. Recent analysis revealed that Rap1 is activated rapidly in response to activation of a variety of receptors. Rap1 activation is mediated by several second messengers, including calcium, diacylglycerol, and cAMP. Guanine nucleotide exchange factors (GEFs) have been identified that mediate these effects. The most interesting GEF is Epac, an exchange protein directly activated by cAMP, thus representing a novel cAMP-induced, protein kinase A-independent pathway. Furthermore, Rap1 is inactivated by specific GTPase-activating proteins (GAPs), one of which is regulated through an interaction with Galphai. While Ras and Rap1 may share some effector pathways, evidence is accumulating that Ras and Rap1 each regulate unique cellular processes in response to various extracellular ligands. For Rap1 these functions may include the control of cell morphology.  相似文献   

3.
Jeyaraj SC  Unger NT  Chotani MA 《Life sciences》2011,88(15-16):645-652
The Ras related GTPase Rap has been implicated in multiple cellular functions. A vital role for Rap GTPase in the cardiovasculature is emerging from recent studies. These small monomeric G proteins act as molecular switches, coupling extracellular stimulation to intracellular signaling through second messengers. This member of the Ras superfamily was once described as the transformation suppressor with the ability to ameliorate the Ras transformed phenotype; however, further studies uncovered a unique set of guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and effector proteins for Rap suggesting a more sophisticated role for this small GTPase. At least three different second messengers can activate Rap, namely cyclic AMP (cAMP), calcium and diacylglycerol. More recently, an investigation of Rap in the cardiovasculature has revealed multiple pathways of regulation involving Rap in this system. Two closely related isoforms of Rap1 exist, 1a and 1b. Murine genetic models exist for both and have been described. Although thought at first to be functionally redundant, these isoforms have differing roles in the cardiovasculature. The activation of Rap1a and 1b in various cell types of the cardiovasculature leads to alterations in cell attachment, migration and cell junction formation. This review will focus on the role of these Rap1 GTPases in hematopoietic, endothelial, smooth muscle, and cardiac myocyte function, and conclude with their potential role in human disease.  相似文献   

4.
Rap1 signalling: adhering to new models   总被引:1,自引:0,他引:1  
Ras-like GTPases are ubiquitously expressed, evolutionarily conserved molecular switches that couple extracellular signals to various cellular responses. Rap1, the closest relative of Ras, has attracted much attention because of the possibility that it regulates Ras-mediated signalling. Rap1 is activated by extracellular signals through several regulatory proteins, and it might function in diverse processes, ranging from modulation of growth and differentiation to secretion, integrin-mediated cell adhesion and morphogenesis.  相似文献   

5.
The Rap family of small GTPases is implicated in the mechanisms of synaptic plasticity, particularly synaptic depression. Here we studied the role of Rap in neuronal morphogenesis and synaptic transmission in cultured neurons. Constitutively active Rap2 expressed in hippocampal pyramidal neurons caused decreased length and complexity of both axonal and dendritic branches. In addition, Rap2 caused loss of dendritic spines and spiny synapses, and an increase in filopodia-like protrusions and shaft synapses. These Rap2 morphological effects were absent in aspiny interneurons. In contrast, constitutively active Rap1 had no significant effect on axon or dendrite morphology. Dominant-negative Rap mutants increased dendrite length, indicating that endogenous Rap restrains dendritic outgrowth. The amplitude and frequency of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-mediated miniature excitatory postsynaptic currents (mEPSCs) decreased in hippocampal neurons transfected with active Rap1 or Rap2, associated with reduced surface and total levels of AMPA receptor subunit GluR2. Finally, increasing synaptic activity with GABA(A) receptor antagonists counteracted Rap2's inhibitory effect on dendrite growth, and masked the effects of Rap1 and Rap2 on AMPA-mediated mEPSCs. Rap1 and Rap2 thus have overlapping but distinct actions that potentially link the inhibition of synaptic transmission with the retraction of axons and dendrites.  相似文献   

6.
Phagocytic NADPH oxidase plays a critical role in superoxide generation in macrophage cells. Small GTPases, including Rac1 and Rac2, have been implicated in the regulation of NADPH oxidase activity. Rap1, which has no effect in a cell-free system of oxidase activation, recently has been proven to colocalize with cytochrome b(558). In addition, neutrophils from rap1A(-/-) mice reduce fMLP-stimulated superoxide production. Here, we tried to determine whether Rap1 also plays a role in the production of superoxide. IgG-opsonized zymosan (IOZ) particles treatment induced Rap1 activation and superoxide generation. Knock-down of Rap1 by si-Rap1 suppressed IOZ-induced superoxide formation. Sh-RhoA also reduced superoxide levels, but 8CPT-2Me-cAMP, an activator of Epac1 (a guanine nucleotide exchange factor (GEF) of Rap1), could recover the levels to the control value. When cells were stimulated by IOZ, Rap1 and Rac1 were translocated to the membrane, and then interacted with p22(phox). 8CPT-2Me-cAMP rescued sh-RhoA-induced reduction of the interaction between Rac1 and p22(phox), and enhanced lysophosphatidic acid (LPA)-induced increase of their interaction. Moreover, Rac1 activity was increased by both LPA and 8CPT-2Me-cAMP when treated with IOZ particles. Si-Vav2 impaired GTP-Rac1 levels in response to 8CPT-2Me-cAMP/IOZ. Phosphorylation of RhoA activates Rac1 in response to IOZ by the enhanced binding of phospho-RhoA to RhoGDI, leading to the release of Rac1 from the Rac1-RhoGDI complex. In conclusion, IOZ treatment induces Rap1 activation and phosphorylation of RhoA, which in turn cause Rac1 activation and promote Rac1 translocation to the membrane leading to binding with p22(phox) that activates NADPH oxidase and produces superoxide.  相似文献   

7.
Polarized cellular responses, for example, cell migration, require the co-ordinated assembly of signalling complexes at a particular subcellular location, such as the leading edge of cells. Small GTPases of the Ras superfamily play central roles in many (polarized) responses to growth factors, chemokines or integrin ligands. These small GTPases are functionally distinct, yet remarkably homologous in their primary sequence and especially in their effector domains. Therefore it has long been unclear how GTPase signalling specificity is regulated. Small GTPases carry a lipid anchor, in the context of a hypervariable region, which mediates membrane association. However, whereas the lipid has long been proposed to be the critical regulator of subcellular GTPase targeting, there is now increasing evidence that specific protein-protein interactions are important as well. This review discusses recent findings on GTPase targeting and proposes a revised model for GTPase signalling. In this model, the hypervariable domain acts in conjunction with the lipid tail to target the GTPase to specific membrane-associated protein complexes. Here, local GTPase activation occurs, leading to subsequent exposure of the effector domain, binding to effector proteins and the initiation of downstream signalling.  相似文献   

8.
In bacteria, large G domain GTPases have well-established functions in translation, protein translocation, tRNA modification and ribosome assembly. In addition, bacteria also contain small Ras-like GTPases consisting of stand-alone G domains. Recent data have revealed that small Ras-like GTPases as well as large G domain GTPases in bacteria function in the regulation of cell polarity, signal transduction and possibly also in cell division. The small Ras-like GTPase MglA together with its cognate GAP MglB regulates cell polarity in Myxococcus xanthus, and the small Ras-like GTPase CvnD9 in Streptomyces coelicolor is involved in signal transduction. Similarly, the large GTPase FlhF together with the ATPase FlhG regulates the localization and number of flagella in polarly flagellated bacteria. Moreover, large dynamin-like GTPases in bacteria may function in cell division. Thus, the function of GTPases in bacteria may be as pervasive as in eukaryotes.  相似文献   

9.
10.
Phagocytosis occurs primarily through two main processes in macrophages: the Fcγ receptor- and the integrin αMβ2-mediated processes. Complement C3bi-opsonized particles are known to be engulfed through integrin αMβ2-mediated process, which is regulated by RhoA GTPase. C3 toxin fused with Tat-peptide (Tat-C3 toxin), an inhibitor of the Rho GTPases, was shown to markedly inhibit the phagocytosis of serum (C3bi)-opsonized zymosans (SOZs). However, 8CPT-2Me-cAMP, an activator of exchange protein directly activated by cAMP (Epac, Rap1 guanine nucleotide exchange factor), restored the phagocytosis of the SOZs that was previously inhibited by the Tat-C3 toxin. In addition, a constitutively active form of Rap1 GTPase (CA-Rap1) also restored the phagocytosis that was previously reduced by a dominant negative form of RhoA GTPase (DN-RhoA). This suggests that Rap1 can replace the function of RhoA in the phagocytosis. Inversely, CA-RhoA rescued the phagocytosis that was suppressed by DN-Rap1. These findings suggest that both RhoA and Rap1 GTPases collectively regulate the phagocytosis of SOZs. In addition, filamentous actin was reduced by the Tat-C3 toxin, which was again restored by 8CPT-2Me-cAMP. Small interfering profilin suppressed the phagocytosis, suggesting that profilin is essential for the phagocytosis of SOZs. Furthermore, 8CPT-2Me-cAMP increased the co-immunoprecipitation of profilin with Rap1, whereas Tat-C3 toxin decreased that of profilin with RhoA. Co-immunoprecipitations of profilin with actin, Rap1, and RhoA GTPases were augmented in the presence of GTPγS rather than GDP. Therefore, we propose that both Rap1 and RhoA GTPases regulate the formation of filamentous actin through the interaction between actin and profilin, thereby collectively inducing the phagocytosis of SOZs in macrophages.  相似文献   

11.
The Rsr1 protein of Saccharomyces cerevisiae has been shown to be essential for bud site selection (Bender, A., and Pringle, J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9976-9980). This protein of 272 amino acids shares approximately 50% sequence identity with both Ras and Rap GTPases. However, neither GTP binding nor GTPase activity of the Rsr1 protein has been reported. The Rsr1 protein shares with human Rap1 GTPases the four specific motifs, i.e. Gly-12, residues 32-40, Ala-59, and residues 64-70, that are required for GAP3-dependent activation of the Rap1 GTPases. In this paper we demonstrate that the intrinsic GTPase activity of the Rsr1 protein is stimulated by GAP3 purified from bovine brain cytosol. The Rsr1 GTPase is not activated by either GAP1 or GAP2 which are specific for the Ras and Rho GTPases, respectively. Thus, it appears that the Rsr1 GTPase is a new member of the Rap1 GTPase family. Replacement of Gly-12 by Val in the Rsr1 GTPase completely abolishes the GAP3-dependent activation. The chimeric GTPases, Ras(1-60)/Rsr1(61-168) and Rsr1(1-65)/Ras(66-189), are activated by GAP3 but not by GAP1. Replacement of Thr-65 by Ser in the latter chimeric GTPase completely abolishes the GAP3-dependent activation, indicating that Thr-65 is required for distinguishing GAP3 from GAP1. We have previously shown that Gln-61 and Ser-65 are sufficient to determine the GAP1 specificity. Replacement of Thr-35 by Ala in the common effector domain (residues 32-40) of the chimeric Ras/Rsr1 GTPases completely abolishes GAP3-dependent activation.  相似文献   

12.
We found that engagement of beta2 integrins on human neutrophils increased the levels of GTP-bound Rap1 and Rap2. Also, the activation of Rap1 was blocked by PP1, SU6656, LY294002, GF109203X, or BAPTA-AM, which indicates that the downstream signaling events in Rap1 activation involve Src tyrosine kinases, phosphoinositide 3-kinase, protein kinase C, and release of calcium. Surprisingly, the beta2 integrin-induced activation of Rap2 was not regulated by any of the signaling pathways mentioned above. However, we identified nitric oxide as the signaling molecule involved in beta2 integrin-induced activation of Rap1 and Rap2. This was illustrated by the fact that engagement of beta2 integrins increased the production of nitrite, a stable end-product of nitric oxide. Furthermore, pretreatment of neutrophils with Nomega-monomethyl-L-arginine, or 1400W, which are inhibitors of inducible nitric-oxide synthase, blocked beta2 integrin-induced activation of Rap1 and Rap2. Similarly, Rp-8pCPT-cGMPS, an inhibitor of cGMP-dependent serine/threonine kinases, also blunted the beta2 integrin-induced activation of Rap GTPases. Also nitric oxide production and its downstream activation of cGMP-dependent serine/threonine kinases were essential for proper neutrophil adhesion by beta2 integrins. Thus, we made the novel findings that beta2 integrin engagement on human neutrophils triggers production of nitric oxide and its downstream signaling is essential for activation of Rap GTPases and neutrophil adhesion.  相似文献   

13.
  1. Download : Download high-res image (176KB)
  2. Download : Download full-size image
  相似文献   

14.
The small GTPase Rap1 has been implicated in both negative and positive control of Ras-mediated signalling events. We have investigated which extracellular signals can activate Rap1 and whether this activation leads to a modulation of Ras effector signalling, i.e. the activation of ERK and the small GTPase Ral. We found that Rap1 is rapidly activated following stimulation of a large variety of growth factor receptors. These receptors include receptor tyrosine kinases for platelet-derived growth factor (PDGF) and epithelial growth factor (EGF), and G protein-coupled receptors for lysophosphatidic acid (LPA), thrombin and endothelin. At least three distinct pathways may transduce a signal towards Rap1 activation: increase in intracellular calcium, release of diacylglycerol and cAMP synthesis. Surprisingly, activation of endogenous Rap1 fails to affect Ras-dependent ERK activation. In addition, we found that although overexpression of active Rap1 is able to activate the Ral pathway, activation of endogenous Rap1 in fibroblasts does not result in Ral activation. Rap1 also does not negatively influence Ras-mediated Ral activation. We conclude that activation of Rap1 is a common event upon growth factor treatment and that the physiological function of Rap1 is likely to be different from modulation of Ras effector signalling.  相似文献   

15.
The effects of tumor necrosis factor-alpha (TNF-alpha) on insulin-induced phosphorylation of protein kinase B-alpha (PKB-alpha) and downstream enzyme glycogen synthase kinase-3 beta (GSK-3 beta) was examined in HepG2 liver cells. The exogenous treatment of HepG2 cells with TNF-alpha for 1 h caused phosphorylation of Ser473 and Thr308 residues of PKB-alpha. The maximal phosphorylation (approximately 4-fold) was obtained with 1 ng/ml TNF-alpha and no further increase was observed with higher concentrations of this cytokine. The cells pretreated with TNF-alpha for 1 h followed by incubation with insulin (10 nM) showed near additive effect on phosphorylation of PKB-alpha and downstream enzyme GSK-3 beta. The long-term (4, 8, 24 h) exogenous treatment of cells with optimal (1 ng/ml) concentration of TNF-alpha also caused phosphorylation of PKB-alpha, albeit to a lesser degree. However, long-term pretreatments of cells with TNF-alpha reduced insulin-stimulated phosphorylation of PKB-alpha and GSK-3 beta. Short- and long-term preincubation of HepG2 cells with TNF-alpha also resulted in parallel changes in glycogen synthesis in the presence of insulin. In fact, long-term preincubation with TNF-alpha completely abolished the insulin-induced glycogen synthesis. These results suggest that short-term exposure to TNF-alpha augments insulin effects whereas long-term exposure causes insulin resistance in HepG2 cells.  相似文献   

16.
Rap1 GTPase activation by its cAMP responsive nucleotide exchange factor Epac present in endothelial cells increases endothelial cell barrier function with an associated increase in cortical actin. Here, Epac1 was shown to be responsible for these actin changes and to colocalize with microtubules in human umbilical vein endothelial cells. Importantly, Epac activation with a cAMP analogue, 8-pCPT-2'O-Me-cAMP resulted in a net increase in the length of microtubules. This did not require cell-cell interactions or Rap GTPase activation, and it was attributed to microtubule growth as assessed by time-lapse microscopy of human umbilical vein endothelial cell expressing fluorophore-linked microtubule plus-end marker end-binding protein 3. An intact microtubule network was required for Epac-mediated changes in cortical actin and barrier enhancement, but it was not required for Rap activation. Finally, Epac activation reversed microtubule-dependent increases in vascular permeability induced by tumor necrosis factor-alpha and transforming growth factor-beta. Thus, Epac can directly promote microtubule growth in endothelial cells. This, together with Rap activation leads to an increase in cortical actin, which has functional significance for vascular permeability.  相似文献   

17.
Rap1 and Rap2 are closely related proteins of the Ras family of small G-proteins. Rap1 is well known to regulate cell-cell adhesion. Here, we have analysed the effect of Rap-mediated signalling on endothelial permeability using electrical impedance measurements of HUVEC monolayers and subsequent determination of the barrier resistance, which is a measure for the ease with which ions can pass cell junctions. In line with its well-established effect on cell-cell junctions, depletion of Rap1 decreases, whereas activation of Rap1 increases barrier resistance. Despite its high sequence homology with Rap1, depletion of Rap2 has an opposite, enhancing, effect on barrier resistance. This effect can be mimicked by depletion of the Rap2 specific activator RasGEF1C and the Rap2 effector MAP4K4, establishing Rap2 signalling as an independent pathway controlling barrier resistance. As simultaneous depletion or activation of both Rap1 and Rap2 results in a barrier resistance comparable to control cells, Rap1 and Rap2 control barrier resistance in a reciprocal manner. This Rap1-antagonizing effect of Rap2 is established independent of junctional actin formation. These data establish that endothelial barrier resistance is determined by the combined antagonistic actions of Rap1 and Rap2.  相似文献   

18.
Pulmonary microvascular barrier dysfunction is a hallmark feature of acute lung injury (ALI). IQGAP1 is a ubiquitously expressed scaffolding protein known to regulate cancer metastasis, angiogenesis, and barrier stability. However, the function of IQGAP1 in lipopolysaccharide (LPS)-induced microvascular endothelial hyperpermeability remains poorly understood. In the present study, we demonstrated that IQGAP1 was markedly upregulated in LPS-induced ALI models and rat pulmonary microvascular endothelial cells (RPMVECs). Lentivirus-mediated knockdown of IQGAP1 significantly attenuated the formation of actin stress fibers, phosphorylation of myosin light chain (MLC), and disruption of VE-cadherin, thereby protecting the RPMVECs barrier failure from LPS damage. In addition, IQGAP1 depletion reduced the reactive oxygen species (ROS)-mediated increase in intracellular adhesion molecule-1 (ICAM-1) in RPMVECs stimulated with LPS. Mechanistically, we found that the upregulation of IQGAP1 affected the activity of Rap1 and the downstream phosphorylation of Src. In conclusion, these findings reveal an essential mechanism by which increased IQGAP1 in LPS-treated RPMVECs promotes barrier dysfunction and ICAM-1 upregulation, at least in part by regulating Rap1/Src signalling, indicating that IQGAP1 may be a potential therapeutic target to prevent endothelial hyperpermeability and inflammation in ALI.  相似文献   

19.
Telomeres are nucleoprotein structures that cap the ends of chromosomes and thereby protect their stability and integrity. In the presence of telomerase, the enzyme that synthesizes telomeric repeats, telomere length is controlled primarily by Rap1p, the budding yeast telomeric DNA binding protein which, through its C-terminal domain, nucleates a protein complex that limits telomere lengthening. In the absence of telomerase, telomeres shorten with every cell division, and eventually, cells enter replicative senescence. We have set out to identify the telomeric property that determines the replicative capacity of telomerase-deficient budding yeast. We show that in cells deficient for both telomerase and homologous recombination, replicative capacity is dependent on telomere length but not on the binding of Rap1p to the telomeric repeats. Strikingly, inhibition of Rap1p binding or truncation of the C-terminal tail of Rap1p in Kluyveromyces lactis and deletion of the Rap1p-recruited complex in Saccharomyces cerevisiae lead to a dramatic increase in replicative capacity. The study of the role of telomere binding proteins and telomere length on replicative capacity in yeast may have significant implications for our understanding of cellular senescence in higher organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号