首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
The virologic and cellular factors that are involved in transmission of human immunodeficiency virus type 1 (HIV-1) across the female genital tissue are poorly understood. We have recently developed a human cervical tissue-derived organ culture model to study heterosexual transmission of HIV-1 that mimics the in vivo situation. Using this model we investigated the role of phenotypic characteristics of HIV-1 and identified the cell types that are first infected during transmission. Our data indicate that the cell-free R5 HIV-1 was more efficiently transmitted than cell-free X4 HIV-1. Cell-free and cell-associated HIV-1 had comparable transmission efficiency regardless of whether the virus was of R5 or X4 type. We have demonstrated that memory CD4(+) T cells and not Langerhans cells were the first HIV-1 RNA-positive cells detected at the epithelial-submucosal junction 6 h after virus exposure. Multicolor laser confocal microscopy demonstrated a globular distribution of HIV-1 gag-pol mRNA in the cytoplasm, and the distribution of CD4 and the CD45RO isoform was irregular on the cellular membrane. At 96 h postinoculation, in addition to memory CD4(+) T cells, HIV-1 RNA-positive Langerhans cells and macrophages were also detected. The identification of CD4(+) T cells in the tissue at 6 h was confirmed by flow cytometric simultaneous immunophenotyping and ultrasensitive fluorescence in situ hybridization assay on immune cells isolated from disaggregated tissue. Furthermore, PMPA [9-[2-(phosphonomethoxy)propyl] adenine], an antiretroviral compound, and UC781, a microbicide, inhibited HIV-1 transmission across the mucosa, indicating the utility of the organ culture to screen topical microbicides for their ability to block sexual transmission of HIV-1.  相似文献   

2.
The gastrointestinal tract is structurally and functionally different from the vagina. Thus, the paradigm of topical microbicide development and evaluation has evolved to include rectal microbicides (RMs). Our interest was to create unique RM formulations to safely and effectively deliver antiretroviral drugs to mucosal tissue. RMs were designed to include those that spread and coat all surfaces of the rectum and distal colon rapidly (liquid) and those that create a deformable, erodible barrier and remain localized at the administration site (gel). Tenofovir (TFV) (1%) was formulated as an aqueous thermoreversible fluid and a carbopol-based aqueous hydrogel. Lipid-based liquid and gel formulations were prepared for UC781 (0.1%) using isopropyl myristate and GTCC (Caprylic/Capric Triglycerides), respectively. Formulations were characterized for pH, viscosity, osmolality, and drug content. Pre-clinical testing incorporated ex vivo colonic tissue obtained through surgical resections and flexible sigmoidoscopy (flex sig). As this was the first time using tissue from both sources side-by-side, the ability to replicate HIV-1 was compared. Efficacy of the RM formulations was tested by applying the products with HIV-1 directly to polarized colonic tissue and following viral replication. Safety of the formulations was determined by MTT assay and histology. All products had a neutral pH and were isoosmolar. While HIV-1BaL and HIV-1JR-CSF alone and in the presence of semen had similar replication trends between surgically resected and flex sig tissues, the magnitude of viral replication was significantly better in flex sig tissues. Both TFV and UC781 formulations protected the colonic tissue, regardless of tissue source, from HIV-1 and retained tissue viability and architecture. Our in vitro and ex vivo results show successful formulation of unique RMs. Moreover, the results of flex sig and surgically resected tissues were comparable suggesting the incorporation of both in pre-clinical testing algorithms.  相似文献   

3.

Objectives

Successful control of the HIV/AIDS pandemic requires reduction of HIV-1 transmission at sexually-exposed mucosae. No prevention studies of the higher-risk rectal compartment exist. We report the first-in-field Phase 1 trial of a rectally-applied, vaginally-formulated microbicide gel with the RT-inhibitor UC781 measuring clinical and mucosal safety, acceptability and plasma drug levels. A first-in-Phase 1 assessment of preliminary pharmacodynamics was included by measuring changes in ex vivo HIV-1 suppression in rectal biopsy tissue after exposure to product in vivo.

Methods

HIV-1 seronegative, sexually-abstinent men and women (N = 36) were randomized in a double-blind, placebo-controlled trial comparing UC781 gel at two concentrations (0.1%, 0.25%) with placebo gel (1∶1∶1). Baseline, single-dose exposure and a separate, 7-day at-home dosing were assessed. Safety and acceptability were primary endpoints. Changes in colorectal mucosal markers and UC781 plasma drug levels were secondary endpoints; ex vivo biopsy infectibility was an ancillary endpoint.

Results

All 36 subjects enrolled completed the 7–14 week trial (100% retention) including 3 flexible sigmoidoscopies, each with 28 biopsies (14 at 10 cm; 14 at 30 cm). There were 81 Grade 1 adverse events (AEs) and 8 Grade 2; no Grade 3, 4 or procedure-related AEs were reported. Acceptability was high, including likelihood of future use. No changes in mucosal immunoinflammatory markers were identified. Plasma levels of UC781 were not detected. Ex vivo infection of biopsies using two titers of HIV-1BaL showed marked suppression of p24 in tissues exposed in vivo to 0.25% UC781; strong trends of suppression were seen with the lower 0.1% UC781 concentration.

Conclusions

Single and 7-day topical rectal exposure to both concentrations of UC781 were safe with no significant AEs, high acceptability, no detected plasma drug levels and no significant mucosal changes. Ex vivo biopsy infections demonstrated marked suppression of HIV infectibility, identifying a potential early biomarker of efficacy. (Registered at ClinicalTrials.gov; #NCT00408538)  相似文献   

4.
5.

Background  

Previous in vitro studies have demonstrated that polyvinylpyrrolidone coated silver nanoparticles (PVP-coated AgNPs) have antiviral activity against HIV-1 at non-cytotoxic concentrations. These particles also demonstrate broad spectrum virucidal activity by preventing the interaction of HIV-1 gp120 and cellular CD4, thereby inhibiting fusion or entry of the virus into the host cell. In this study, we evaluated the antiviral activity of PVP-coated AgNPs as a potential topical vaginal microbicide to prevent transmission of HIV-1 infection using human cervical culture, an in vitro model that simulates in vivo conditions.  相似文献   

6.
One of the cell types first encountered by human immunodeficiency virus type 1 (HIV-1) following sexual transmission are dendritic cells (DC). DC capture HIV-1 through C-type lectin receptors, of which the best studied example is DC-SIGN, which mediates HIV-1 internalization. DC can keep the virus infectious for several days and are able to transmit HIV-1 to CD4(+) T cells. We tested proteins from milk and serum for their ability to block DC-mediated HIV-1 transmission, of which bovine lactoferrin (bLF) is the most potent inhibitor. bLF binds strongly to DC-SIGN, thus preventing virus capture and subsequent transmission. Interestingly, bLF is a much more efficient inhibitor of transmission than human lactoferrin. Since bLF is nontoxic and easy to purify in large quantities, it is an interesting candidate microbicide against HIV-1. Another advantage of bLF is its ability to block HIV-1 replication in T cells. DC-mediated capture of a bLF-resistant HIV-1 variant that was selected during long-term culturing in T cells could still be blocked by bLF. This underscores the usefulness of bLF as a microbicide drug to prevent HIV-1 transmission.  相似文献   

7.
8.
9.

Key message

Cyanovirin-N produced in rice endosperm provides efficient pre-exposure prophylaxis against HIV-1 BaL infection in vitro.

Abstract

Cyanovirin-N (CV-N) is a lectin with potent antiviral activity that has been proposed as a component of microbicides for the prevention of infection with Human immunodeficiency virus (HIV). The production of protein-based microbicide components requires a platform that is sufficiently economical and scalable to meet the demands of the large at-risk population, particularly in resource poor developing countries. We, therefore, expressed CV-N in rice endosperm, because the dried seed is ideal for storage and transport and crude extracts could be prepared locally and used as a microbicide component without further purification. We found that crude extracts from rice seeds expressing up to 10 µg CV-N per gram dry seed weight showed dose-dependent gp120 binding activity, confirming that the protein was soluble, correctly folded and active. The recombinant lectin (OSCV-N) reduced the infectivity of HIV-1BaL (an R5 virus strain representing the majority of transmitted infections) by ~90 % but showed only weak neutralization activity against HIV-1RF (representative of X4 virus, rarely associated with transmission), suggesting it would be highly effective for pre-exposure prophylaxis against the vast majority of transmitted strains. Crude extracts expressing OSCV-N showed no toxicity towards human cells at working dilutions indicating that microbicide components produced in rice endosperm are safe for direct application as topical microbicides in humans.
  相似文献   

10.
11.
The vaginal and cervical epithelia provide an initial barrier to sexually acquired HIV-1 infection in women. To study the interactions between HIV-1-infected cells or cell-free HIV-1 and the reproductive epithelium, the transmission of HIV-1 by infected cells or cell-free virus across human cervical epithelial cells was examined using a Transwell culture system. Cell-associated HIV-1 was transmitted more efficiently than cell-free virus, and monocyte-associated virus was transmitted most efficiently. Abs to ICAM-1 added to the apical side of the epithelium blocked cell-mediated transepithelial HIV-1 transmission in vitro. When used in a previously described model of vaginal HIV-1 transmission in human PBL-SCID mice, anti-murine ICAM-1 Abs (0.4 microg/10 microl) also blocked vaginal transmission of cell-associated HIV-1 in vivo. To evaluate a candidate delivery system for the use of this Ab as an anti-HIV-1 microbicide, anti-ICAM single-chain variable fragment Abs secreted by transformed lactobacilli were evaluated for their protective efficacy in the Transwell model. Like the intact Ab and Fab derived from it, the single-chain variable fragment at a concentration of 6.7 microg/100 microl was able to reduce HIV-1 transmission by 70 +/- 5%. These data support the potential efficacy of an anti-ICAM Ab delivered by lactobacilli for use as an anti-HIV-1 microbicide.  相似文献   

12.
Neff CP  Kurisu T  Ndolo T  Fox K  Akkina R 《PloS one》2011,6(6):e20209
For prevention of HIV infection many currently licensed anti-HIV drugs and new ones in the pipeline show potential as topically applied microbicides. While macaque models have been the gold standard for in vivo microbicide testing, they are expensive and sufficient numbers are not available. Therefore, a small animal model that facilitates rapid evaluation of potential candidates for their preliminary efficacy is urgently needed in the microbicide field. We previously demonstrated that RAG-hu humanized mouse model permits HIV-1 mucosal transmission via both vaginal and rectal routes and that oral pre-exposure chemo-prophylactic strategies could be tested in this system. Here in these proof-of-concept studies, we extended this system for topical microbicide testing using HIV-1 as the challenge virus. Maraviroc, a clinically approved CCR5 inhibitor drug for HIV treatment, was formulated as a microbicide gel at 5 mM concentration in 2.2% hydroxyl ethyl cellulose. Female RAG-hu mice were challenged vaginally with HIV-1 an hour after intravaginal application of the maraviroc gel. Our results showed that maraviroc gel treated mice were fully protected against vaginal HIV-1 challenge in contrast to placebo gel treated mice which all became infected. These findings highlight the utility of the humanized mouse models for microbicide testing and, together with the recent data from macaque studies, suggest that maraviroc is a promising candidate for future microbicide clinical trials in the field.  相似文献   

13.

Background

Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb) that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS.

Methods and Findings

This study tested the hypothesis that adeno-associated virus (AAV)-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc), or “minibody” was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1bal in an organotypic human vaginal epithelial cell (VEC) model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.

Conclusion

This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.  相似文献   

14.
A topical microbicide reduces the probability of virus transmission when applied to the vagina or rectum of a person at risk of sexually acquiring HIV-1 infection. An effective microbicide could significantly reduce the global spread of HIV-1, particularly if women were able to use it covertly to protect themselves. A microbicide could target the incoming virus and either permanently inactivate it or reduce its infectivity, or it could block receptors on susceptible cells near the sites of transmission. We describe here how vaginal administration of the broadly neutralizing human monoclonal antibody b12 can protect macaques from simian-human immunodeficiency virus (SHIV) infection through the vagina. Only 3 of 12 animals receiving 5 mg b12 vaginally in either saline or a gel and then challenged vaginally (up to 2 h later) with SHIV-162P4 became infected. In contrast, infection occurred in 12 of 13 animals given various control agents under similar conditions. Lower amounts of b12 were less effective, suggesting that protection was dose dependent. These observations support the concept that viral entry inhibitors can help prevent the sexual transmission of HIV-1 to humans.  相似文献   

15.
The development of efficient microbicides, the topically applied compounds that protect uninfected individuals from acquiring HIV-1, is a promising strategy to contain HIV-1 epidemics. Such microbicides should of course possess anti-HIV-1 activity, but they should also act against other genital pathogens, which facilitate HIV-1 transmission. The new trend in microbicide strategy is to use drugs currently used in HIV-1 therapy. The success of this strategy is mixed so far and is impaired by our limited knowledge of the basic mechanisms of HIV-1 transmission as well as by the inadequacy of the systems in which microbicides are tested in preclinical studies.  相似文献   

16.
Topical microbicides are an emerging HIV/AIDS prevention modality. Microbicide biofunctionality requires creation of a chemical-physical barrier against HIV transmission. Barrier effectiveness derives from properties of the active compound and its delivery system, but little is known about how these properties translate into microbicide functionality. We developed a mathematical model simulating biologically relevant transport and HIV-neutralization processes occurring when semen-borne virus interacts with a microbicide delivery vehicle coating epithelium. The model enables analysis of how vehicle-related variables, and anti-HIV compound characteristics, affect microbicide performance. Results suggest HIV neutralization is achievable with postcoital coating thicknesses approximately 100 mum. Increased microbicide concentration and potency hasten viral neutralization and diminish penetration of infectious virus through the coating layer. Durable vehicle structures that restrict viral diffusion could provide significant protection. Our findings demonstrate the need to pair potent active ingredients with well-engineered formulation vehicles, and highlight the importance of the dosage form in microbicide effectiveness. Microbicide formulations can function not only as drug delivery vehicles, but also as physical barriers to viral penetration. Total viral neutralization with 100-mum-thin coating layers supports future microbicide use against HIV transmission. This model can be used as a tool to analyze diverse factors that govern microbicide functionality.  相似文献   

17.
18.

Background

Previous studies have shown that 3-hydroxyphthalic anhydride (HP)-modified bovine milk protein, β-lactoglobulin (β-LG), is a promising microbicide candidate. However, concerns regarding the potential risk of prion contamination in bovine products and carcinogenic potential of phthalate derivatives were raised. Here we sought to replace bovine protein with an animal protein of non-bovine origin and substitute HP with another anhydride for the development of anti-HIV microbicide for preventing HIV sexual transmission.

Results

Maleic anhydride (ML), succinic anhydride (SU) and HP at different conditions and variable pH values were used for modification of proteins. All the anhydrate-modified globulin-like proteins showed potent anti-HIV activity, which is correlated with the percentage of modified lysine and arginine residues in the modified protein. We selected maleic anhydride-modified ovalbumin (ML-OVA) for further study because OVA is easier to obtain than β-LG, and ML is safer than HP. Furthermore, ML-OVA exhibited broad antiviral activities against HIV-1, HIV-2, SHIV and SIV. This modified protein has no or low in vitro cytotoxicity to human T cells and vaginal epithelial cells. It is resistant to trypsin hydrolysis, possibly because the lysine and arginine residues in OVA are modified by ML. Mechanism studies suggest that ML-OVA inhibits HIV-1 entry by targeting gp120 on HIV-1 virions and also the CD4 receptor on the host cells.

Conclusion

ML-OVA is a potent HIV fusion/entry inhibitor with the potential to be developed as an effective, safe and inexpensive anti-HIV microbicide.  相似文献   

19.
The human immunodeficiency virus (HIV-1) pandemic has been driven primarily by the sexual transmission of the virus, and facilitated by prior infections with other sexually transmitted disease (STD) pathogens. Although treatment of these STDs has been proposed as a means to decrease the rate of HIV-1 sexual transmission, preventive measures effective against both HIV-1 and other STD pathogens are expected to have a larger impact. These measures include topically applied mechanical and chemical (i.e. microbicidal) barriers. Microbicides of preference should have a broad specificity against diverse STD pathogens and a well established safety record, considering their repeated use over decades. Here, we report that cellulose acetate phthalate (CAP), an "inactive" pharmaceutical excipient, commonly used in the production of enteric tablets and capsules: (1) has antiviral activity against HIV-1 and several herpesviruses (HSV); and (2) when appropriately formulated, in micronized form, inactivates HIV-1, HSV-1, HSV-2, cytomegalovirus, Neisseria gonorrhoeae, Trichomonas vaginalis, Haemophilus ducreyi and Chlamydia trachomatis but does not affect Lactobacilli, components of the natural vaginal flora contributing to resistance against STDs. Thus, the CAP formulations meet the criteria for preferred microbicides and warrant further evaluation in vivo in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号