首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Based on our previous observations that active ERK associates with and phosphorylates Gab1 in response to HGF, and the prediction that the ERK phosphorylation site is adjacent to one of the phosphatidylinositol 3-kinase (PI3K) SH2 binding motifs, we examined the possibility that ERK phosphorylation can regulate the Gab1/PI3K association. The HGF-mediated association of Gab1 with either full-length GST-p85 or its isolated N- or C-terminal SH2 domains was inhibited by approximately 50% in the setting of ERK inhibition, a result confirmed by co-immunoprecipitation of the native proteins. A 14-amino acid peptide encoding (472)YVPMTP(477) (one of the major p85 binding sites in Gab1 and the predicted ERK phosphorylation site) was synthesized with either phosphotyrosine alone (pY), or phosphotyrosine + phosphothreonine (pYT). In both pull-down assays and competition assays, pYT demonstrated a higher affinity for p85 than did pY alone. Finally, examination of the phosphorylation state of Akt after HGF stimulation revealed that ERK inhibition resulted in a decrease in Akt activation at both 5 and 10 min. These results suggest that activated ERK can phosphorylate Gab1 in response to HGF stimulation and thereby potentiate the Gab1/PI3K association and subsequent PI3K activation.  相似文献   

2.
Hepatocyte growth factor (scatter factor) (HGF/SF) is a pleiotrophic mediator of epithelial cell motility, morphogenesis, angiogenesis, and tumorigenesis. HGF/SF protects cells against DNA damage by a pathway from its receptor c-Met to phosphatidylinositol 3-kinase (PI3K) to c-Akt, resulting in enhanced DNA repair and decreased apoptosis. We now show that protection against the DNA-damaging agent adriamycin (ADR; topoisomerase IIalpha inhibitor) requires the Grb2-binding site of c-Met, and overexpression of the Grb2-associated binder Gab1 (a multisubstrate adapter required for epithelial morphogenesis) inhibits the ability of HGF/SF to protect MDCK epithelial cells against ADR. In contrast to Gab1 and its homolog Gab2, overexpression of c-Cb1, another multisubstrate adapter that associates with c-Met, did not affect protection. Gab1 blocked the ability of HGF/SF to cause the sustained activation of c-Akt and c-Akt signaling (FKHR phosphorylation). The Gab1 inhibition of sustained c-Akt activation and of cell protection did not require the Gab1 pleckstrin homology or SHP2 phosphatase-binding domain but did require the PI3K-binding domain. HGF/SF protection of parental MDCK cells was blocked by wortmannin, expression of PTEN, and dominant negative mutants of p85 (regulatory subunit of PI3K), Akt, and Pak1; the protection of cells overexpressing Gab1 was restored by wild-type or activated mutants of p85, Akt, and Pak1. These findings suggest that the adapter Gab1 may redirect c-Met signaling through PI3K away from a c-Akt/Pak1 cell survival pathway.  相似文献   

3.
The scaffolding/adapter protein, Gab1, is a key signaling molecule for numerous stimuli including growth factors and G protein-coupled-receptors (GPCRs). A number of questions about Gab1 signaling remain and little is known about the ability of gastrointestinal (GI) hormones/neurotransmitters/growth factors to activate Gab1. Therefore, we examined their ability to activate Gab1 and explored the mechanisms involved using rat pancreatic acini. HGF and EGF stimulated total Gab1 tyrosine phosphorylation (TyrP) and TyrP of Gab1 phospho-specific sites (Y307, Y627), but not other pancreatic growth factors, GI GPCRs (CCK, bombesin, carbachol, VIP, secretin), or agents directly activating PKC or increasing Ca2+. HGF-stimulated Y307 Gab1 TyrP differed in kinetics from total and Y627. Neither GF109203X, nor inhibition of Ca2+ increases altered HGF's effect. In unstimulated cells>95% of Gab1 was cytosolic and HGF stimulated a 3-fold increase in membrane Gab1. HGF stimulated equal increases in pY307 and pY627 Gab1 in cytosol/membrane. HGF stimulated Gab1 association with c-Met, Grb2, SHP2, PI3K, Shc, Crk isoforms and CrkL, but not with PLCgamma1. These results demonstrate that only a subset of pancreatic growth factors (HGF/EGF) stimulates Gab1 signaling and no pancreatic hormones/neurotransmitters. Our results with Gab1 activation with different growth factors, the role of PKC, and its interaction with distant signaling molecules suggest the cellular mechanisms of Gab1 signaling show important differences in different cells. These results show that Gab1 activation plays a central role in HGF's ability to stimulate intracellular transduction cascades in pancreatic acinar cells and this action likely plays a key role in HGF's ability to alter pancreatic cell function (i.e., growth/regeneration).  相似文献   

4.
Epidermal growth factor (EGF) induces paxillin tyrosine dephosphorylation and Src activation, but the signaling pathways that mediate these responses were largely undefined. We found that Gab1, a docking protein for the SHP2 protein-tyrosine phosphatase in EGF-stimulated cells, was associated with paxillin. SHP2 dephosphorylated paxillin and caused dissociation of Csk, a negative regulator of Src, from paxillin but had no effect on paxillin-Src association. A lower level of Src Tyr-530 phosphorylation was detected in paxillin-associated Src in EGF-stimulated cells. Expression of an SHP2 binding defective mutant of Gab1 (Gab1FF) or a catalytically inactive mutant of SHP2 (SHP2DN) prevented paxillin tyrosine dephosphorylation and Src activation induced by EGF. Importantly, Gab1FF blocked paxillin-SHP2 complex formation, Src Tyr-530 dephosphorylation, Erk activation, and cell migration induced by EGF. Inhibition of Src tyrosine kinase activity abrogated EGF-stimulated Erk activation and cell migration. Together, these results reveal that Gab1 recruits SHP2 to dephosphorylate paxillin, leading to dissociation of Csk from the paxillin-Src complex and Src activation and that Src is an SHP2 effector involved in EGF-stimulated Erk activation and cell migration.  相似文献   

5.
Grb2-associated binder-1 (Gab1) is a multisite docking protein containing a pleckstrin homology (PH) domain, multiple potential tyrosine phosphorylation sites, and several proline-rich sequences. Gab1 becomes tyrosine-phosphorylated in cells stimulated with growth factors, cytokines, and ligands for G protein-coupled receptors. A major Gab1-binding protein detected in cells treated with extracellular stimuli is the tyrosine phosphatase, SHP2. Although the role of SHP2-Gab1 interaction in cell signaling has not yet been characterized, SHP2 is known to mediate mitogen-activated protein (MAP) kinase activation induced by the epidermal growth factor (EGF). However, the mechanism by which the SHP2 phosphatase exerts a positive signaling role remains obscure. In this study, we prepared Gab1 mutants lacking the SHP2 binding site (Gab1Y627F), the phosphatidylinositol 3-kinase (PI3K) binding sites (Gab1DeltaPI3K), and the PH domain (Gab1DeltaPH). Expression of Gab1Y627F blocked the extracellular signal-regulated kinase-2 (ERK2) activation by lysophosphatidic acid (LPA) and EGF. Conversely, expression of the wild-type Gab1 in HEK293 cells augmented the LPA receptor Edg2-mediated ERK2 activation. Whereas the PH domain was required for Gab1 mediation of ERK2 activation by LPA, it was not essential for EGF-induced ERK2 activation. Expression of Gab1DeltaPI3K had no apparent effect on ERK2 activation by LPA and EGF in the cells that we have examined. These results establish a role for Gab1 in the LPA-induced MAP kinase pathway and clearly demonstrate that Gab1-SHP2 interaction is essential for ERK2 activation by LPA and EGF. These findings also suggest that the positive role of SHP2 in the MAP kinase pathway depends on its interaction with Gab1.  相似文献   

6.
Although the mechanisms involved in the activation of mitogen-activated protein kinases (MAPK) by receptor tyrosine kinases do not display an obvious role for phosphoinositide 3-kinases (PI3Ks), we have observed in the nontransformed cell line Vero stimulated with epidermal growth factor (EGF) that wortmannin and LY294002 nearly abolished MAPK activation. The effect was observed under strong stimulation and was independent of EGF concentration. In addition, three mutants of class Ia PI3Ks were found to inhibit MAPK activation to an extent similar to their effect on Akt/protein kinase B activation. To determine the importance of PI3K lipid kinase activity in MAPK activation, we have used the phosphatase PTEN and the pleckstrin homology domain of Tec kinase. Overexpression of these proteins, but not control mutants, was found to inhibit MAPK activation, suggesting that the lipid products of class Ia PI3K are necessary for MAPK signaling. We next investigated the location of PI3K in the MAPK cascade. Pharmacological inhibitors and dominant negative forms of PI3K were found to block the activation of Ras induced by EGF. Upstream from Ras, although association of Grb2 with its conventional effectors was independent of PI3K, we have observed that the recruitment of the tyrosine phosphatase SHP2 required PI3K. Because SHP2 was also essential for Ras activation, this suggested the existence of a PI3K/SHP2 pathway leading to the activation of Ras. In addition, we have observed that the docking protein Gab1, which is involved in PI3K activation during EGF stimulation, is also implicated in this pathway downstream of PI3K. Indeed, the association of Gab1 with SHP2 was blocked by PI3K inhibitors, and expression of Gab1 mutant deficient for binding to SHP2 was found to inhibit Ras stimulation without interfering with PI3K activation. These results show that, in addition to Shc and Grb2, a PI3K-dependent pathway involving Gab1 and SHP2 is essential for Ras activation under EGF stimulation.  相似文献   

7.
Grb2-associated binder-1 (Gab1) is a docking protein closely related to insulin receptor substrates. We previously reported that tyrosine 1062 in RET receptor tyrosine kinase activated by glial cell line-derived neurotrophic factor (GDNF) represents a binding site for the Shc-Grb2-Gab1 complex, and that the p85 subunit of phosphatidylinositol 3-kinase (PI3K) and SHP2 tyrosine phosphatase is associated with Gab1 in GDNF-treated cells. In the present study, we further analyzed the physiological roles of Gab1 downstream of RET, using Gab1 mutants that lack the binding sites for PI3K (Gab1 PI3K-m) or SHP-2 (Gab1 SHP2-m). Expression of Gab1 PI3K-m in SK-N-MC human primitive neuroectodermal tumor cells expressing wild-type RET markedly impaired Akt phosphorylation, Rac1 activation, and lamellipodia formation that were induced by GDNF whereas expression of Gab1 SHP2-m partially impaired Erk activation. Furthermore, expression of Gab1 PI3K-m, but not Gab1 SHP2-m, in TT human medullary thyroid carcinoma cells expressing RET with a multiple endocrine neoplasia 2A mutation enhanced cytochrome c release, and apoptosis induced by etoposide, suggesting that PI3K is involved in survival of TT cells via a mitochondrial pathway. These findings demonstrated that coupling of Gab1 to PI3K is important for biological responses in RET-expressing cells.  相似文献   

8.
IL-2 stimulation of T lymphocytes induces the tyrosine phosphorylation and adaptor function of the insulin receptor substrate/Grb2-associated binder (Gab) family member, Gab2. In addition, Gab2 undergoes a marked decrease in its mobility in SDS-PAGE, characteristic of migration shifts induced by serine/threonine phosphorylations in many proteins. This migration shift was strongly diminished by treating cells with the MEK inhibitor U0126, indicating a possible role for ERK in Gab2 phosphorylation. Indeed, ERK phosphorylated Gab2 on a consensus phosphorylation site at serine 623, a residue located between tyrosine 614 and tyrosine 643 that are responsible for Gab2/Src homology 2 domain-containing tyrosine phosphatase (SHP)-2 interaction. We report that pretreatment of Kit 225 cells with U0126 increased Gab2/SHP-2 association and tyrosine phosphorylation of SHP-2 in response to IL-2, suggesting that ERK phosphorylation of serine 623 regulates the interaction between Gab2 and SHP-2, and consequently the activity of SHP-2. This hypothesis was confirmed by biochemical analysis of cells expressing Gab2 WT, Gab2 serine 623A or Gab2 tyrosine 614F, a mutant that cannot interact with SHP-2 in response to IL-2. Activation of the ERK pathway was indeed blocked by Gab2 tyrosine 614F and slightly increased by Gab2 serine 623A. In contrast, STAT5 activation was strongly enhanced by Gab2 tyrosine 614F, slightly reduced by Gab2 WT and strongly inhibited by Gab2 serine 623A. Analysis of the rate of proliferation of cells expressing these mutants of Gab2 demonstrated that tyrosine 614F mutation enhanced proliferation whereas serine 623A diminished it. These results demonstrate that ERK-mediated phosphorylation of Gab2 serine 623 is involved in fine tuning the proliferative response of T lymphocytes to IL-2.  相似文献   

9.
Receptor tyrosine kinases (RTKs) play distinct roles in multiple biological systems. Many RTKs transmit similar signals, raising questions about how specificity is achieved. One potential mechanism for RTK specificity is control of the magnitude and kinetics of activation of downstream pathways. We have found that the protein tyrosine phosphatase Shp2 regulates the strength and duration of phosphatidylinositol 3'-kinase (PI3K) activation in the epidermal growth factor (EGF) receptor signaling pathway. Shp2 mutant fibroblasts exhibit increased association of the p85 subunit of PI3K with the scaffolding adapter Gab1 compared to that for wild-type (WT) fibroblasts or Shp2 mutant cells reconstituted with WT Shp2. Far-Western analysis suggests increased phosphorylation of p85 binding sites on Gab1. Gab1-associated PI3K activity is increased and PI3K-dependent downstream signals are enhanced in Shp2 mutant cells following EGF stimulation. Analogous results are obtained in fibroblasts inducibly expressing dominant-negative Shp2. Our results suggest that, in addition to its role as a positive component of the Ras-Erk pathway, Shp2 negatively regulates EGF-dependent PI3K activation by dephosphorylating Gab1 p85 binding sites, thereby terminating a previously proposed Gab1-PI3K positive feedback loop. Activation of PI3K-dependent pathways following stimulation by other growth factors is unaffected or decreased in Shp2 mutant cells. Thus, Shp2 regulates the kinetics and magnitude of RTK signaling in a receptor-specific manner.  相似文献   

10.
Adipose tissue is a source of hepatocyte growth factor (HGF), and circulating HGF levels have been associated with elevated body mass index in human. However, the effects of HGF on adipocyte functions have not yet been investigated. We show here that in 3T3-L1 adipocytes HGF stimulates the phosphatidylinositol (PI) 3-kinase-dependent protein kinase B (PKB) activity, AS160 phosphorylation, Glut4 translocation, and consequently, glucose uptake. The initial steps involved in HGF- and insulin-induced glucose uptake are different. HGF enhanced the tyrosine phosphorylation of Gab1, leading to the recruitment of the p85-regulated subunit of PI 3-kinase, whereas p85 was exclusively recruited by IRS1 in response to insulin. In adipocytes rendered insulin-resistant by a long-lasting tumor necrosis factor alpha treatment, the protein level of Gab1 was strongly decreased, and HGF-stimulated PKB activation and glucose uptake were also altered. Moreover, treatment of 3T3-L1 adipocytes with thiazolidinedione, an anti-diabetic drug, enhanced the expression of both HGF and its receptor. These data provide the first evidence that in vitro HGF promotes glucose uptake through a Gab1/PI 3-kinase/PKB/AS160 pathway which was altered in tumor necrosis factor alpha-treated adipocytes.  相似文献   

11.
Hepatitis C virus (HCV) sets up a persistent infection in patients that likely involves a complex virus-host interaction. We previously found that the HCV nonstructural 5A (NS5A) protein interacts with growth factor receptor-binding protein 2 (Grb2) adaptor protein and inhibits the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by epidermal growth factor (EGF). In the present study, we extended this analysis and investigated the specificity of the Grb2-NS5A interaction and whether the subversion of mitogenic signaling involves additional pathways. NS5A containing mutations within the C-terminal proline-rich motif neither bound Grb2 nor inhibited ERK1/2 activation by EGF, demonstrating that NS5A-Grb2 binding and downstream effects were due to direct interactions. Interestingly, NS5A could also form a complex with the Grb2-associated binder 1 (Gab1) protein in an EGF treatment-dependent manner. However, the NS5A-Gab1 association, which appeared indirect, was not mediated by direct NS5A-Grb2 interaction but was likely dependent on direct NS5A interaction with the p85 subunit of phosphatidylinositol 3-kinase (PI3K). The in vivo association of NS5A with p85 PI3K required the N-terminal, but not the C-terminal, region of NS5A. The downstream effects of the NS5A-p85 PI3K interaction included increased tyrosine phosphorylation of p85 PI3K in response to EGF. Consistent with this observation and the antiapoptotic properties of NS5A, we also detected enhanced tyrosine phosphorylation of the downstream AKT protein kinase and increased serine phosphorylation of BAD, a proapoptotic factor and an AKT substrate, in the presence of NS5A. These results collectively suggest a model in which NS5A interacts with Grb2 to inhibit mitogenic signaling while simultaneously promoting the PI3K-AKT cell survival pathway by interaction with p85 PI3K, which may represent a crucial step in HCV persistence and pathogenesis.  相似文献   

12.
In primary rat hepatocyte cultures, activation of phosphatidylinositol 3-kinase is both necessary and sufficient to account for epidermal growth factor (EGF)-induced DNA synthesis. In these cells, three major p85-containing complexes were formed after EGF treatment: ErbB3-p85, Shc-p85, and a multimeric Gab2-Grb2-SHP2-p85, which accounted for more than 80% of total EGF-induced PI3K activity (Kong, M., C. Mounier, J. Wu, and B. I. Posner, J Biol Chem, 2000, 275:36035-36042). More recently, we found that EGF-dependent tyrosine phosphorylation of endogenous Gab2 is essential for EGF-induced DNA synthesis in rat hepatocytes. Here we show that, after EGF treatment, ErbB3-p85 and Shc-p85 complexes were localized to plasma membrane and endosomes, whereas the multimeric Gab2-Grb2-SHP2-p85 complex was formed rapidly (peak at 30 sec) and exclusively in cytosol. Western blotting of subcellular fractions from intact liver and immunofluorescence analyses in cultured hepatocytes demonstrated that EGF did not promote the association of cytosolic Gab2 with cell membranes. These observations prompted us to evaluate the role of the PH domain of Gab2 in regulating its function. Overexpression of the PH domain of Gab2 did not affect EGF-induced Gab2 phosphorylation, PI3K activation, and DNA synthesis. Overexpressed Gab2 lacking the PH domain (DeltaPHGab2) was comparable to wild-type Gab2 in respect to EGF-induced tyrosine phosphorylation, recruitment of p85, and DNA synthesis. In summary, after EGF stimulation, ErbB3, Shc, and Gab2 are differentially compartmentalized in rat liver, where they associate with and activate PI3K. Our data demonstrate that Gab2 mediates EGF-induced PI3K activation and DNA synthesis in a PH domain-independent manner.  相似文献   

13.
The receptor of hepatocyte growth factor (HGF), c-met induces different physiological responses in several cell types. Little is known about the role of HGF in exocrine pancreas. However, abnormal HGF signaling has been strongly implicated in pancreatic tumorigenesis and association of HGF with pancreatitis has been demonstrated. We have studied the presence of c-met and activation of their intracellular pathways associated in rat pancreatic acini in comparison with cholecystokinin (CCK) and epidermal growth factor (EGF). C-met expression in rat exocrine pancreas was identified by immunohistochemistry and immunoprecipitation followed by Western analysis. Tyrosine phosphorylation of c-met is strongly stimulated as well as kinase pathways leading to ERK1/2 cascade. HGF, but not CCK or EGF, selectively caused a consistent increase in the amount of p85 regulatory subunit of PI3-K present in anti-phosphotyrosine immunoprecipitates. Downstream of PI3-K, HGF increased Ser473 phosphorylation of Akt selectively, as CCK or EGF did not affect it. HGF selectively stimulated tyrosine phosphorylation of phosphatase PTP1D. HGF failed to promote the well-known CCK effects in pancreatic acini such as amylase secretion and intracellular calcium mobilization. Although HGF shares activation of ERK1/2 with CCK, we demonstrate that it promotes the selective activation of intracellular pathways not regulated by CCK or EGF. Our results suggest that HGF is an in vivo stimulus of pancreatic acini and provide novel insight into the transduction pathways and effects of c-met/HGF in normal pancreatic acinar cells.  相似文献   

14.
In this study, we examined the biological functions of Gab1 in erythropoietin receptor (EPOR)-mediated signaling in vivo. Knockdown of Gab1 by the introduction of the Gab1 siRNA expression vector into F-36P human erythroleukemia (F-36P-Gab1-siRNA) cells resulted in a reduction of cell proliferation and survival in response to EPO. EPO-induced activation of Erk1/2 but not of Akt was significantly suppressed in F-36P-Gab1-siRNA cells compared with mock-transfected F-36P cells. The co-immunoprecipitation experiments revealed an EPO-enhanced association of Gab1 with the Grb2–SOS1 complex and SHP-2 in F-36P cells. A selective inhibitor of phosphatidylinositol 3-kinase (PI3K) LY294002 and short interfering RNA (siRNA) duplexes targeting the p85 regulatory subunit of PI3K (p85-siRNA) independently suppressed tyrosine phosphorylation of Gab1; its association with Grb2, SHP-2 and p85; and the activation of Erk in EPO-treated F-36P cells. LY294002 inhibited EPO-induced tyrosine phosphorylation of Gab1 and its association with Grb2 in human primary EPO-sensitive erythroid cells. The co-immunoprecipitation experiments using the Jak inhibitor AG490 or siRNA duplexes targeting Jak2 and in vitro binding experiments demonstrated that Jak2 regulated Gab1-mediated Erk activation through tyrosine phosphorylation of Gab1. Taken together, these results suggest that Gab1 couples PI3K-mediated EPO signals with the Ras/Erk pathway and that Gab1 plays an important role in EPOR-mediated signal transduction involved in the proliferation and survival of erythroid cells.  相似文献   

15.
We have previously demonstrated that phosphatidylinositol 3-kinase (PI3-kinase) is necessary and sufficient to account for epidermal growth factor (EGF)-induced mitogenesis in rat primary hepatocytes. A cytosolic Gab2-containing complex accounts for >80% of the total EGF-induced PI3-kinase activity (Kong, M., Mounier, C., Wu, J., and Posner, B. I. (2000) J. Biol. Chem. 275, 36035-36042), suggesting a key role for Gab2 in EGF-induced mitogenesis. Here, we demonstrate that PP1, a selective inhibitor of Src family kinases, blocks the EGF-induced Gab2 tyrosine phosphorylation without inhibiting EGF-induced phosphorylation of the EGF receptor, ErbB3, or Shc. We also show that Gab2 phosphorylation is increased in Csk knockout cells in which Src family kinases are constitutively activated. Furthermore, PP1 blocks Gab2-associated downstream events including EGF-induced PI3-kinase activation, Akt phosphorylation, and DNA synthesis. We demonstrate that Gab2 and Src are constitutively associated. Since this association involves the proline-rich sequences of Gab2, it probably involves the Src homology 3 domain of Src kinase. Mutation of the proline-rich sequences in Gab2 prevented EGF-induced Gab2 phosphorylation, PI3-kinase/Akt activation, and DNA synthesis, demonstrating that Gab2 phosphorylation is critical for EGF-induced mitogenesis and is not complemented by ErbB3 or Shc phosphorylation. We also found that overexpression of a Gab2 mutant lacking SHP2 binding sites increased EGF-induced Gab2 phosphorylation and the activation of PI3-kinase but blocked activation of MAPK. In addition, we demonstrated that the Src-induced response was down-regulated by Gab2-associated SHP2. In summary, our results have defined the role for Src activation in EGF-induced hepatic mitogenesis through the phosphorylation of Gab2 and the activation of the PI3-kinase cascade.  相似文献   

16.
Grb2-assosiated binder (Gab) family proteins are docking molecules that can interact with receptor tyrosine kinases (RTKs) and cytokine receptors and bind several downstream signalling proteins. Studies in several cell types have shown that Gab1 may have a role in signalling mediated by the two RTKs epidermal growth factor (EGF) receptor (EGFR) and Met, the receptor for hepatocyte growth factor (HGF), but the involvement of Gab1 in EGFR and Met signalling has not been directly compared in the same cell. We have studied mechanisms of activation and role in mitogenic signalling of Gab1 in response to EGF and HGF in cultured rat hepatocytes. Gab1, but not Gab2, was expressed in the hepatocytes and was phosphorylated upon stimulation with EGF or HGF. Depletion of Gab1, using siRNA, decreased the ERK and Akt activation, cyclin D1 expression, and DNA synthesis in response to both EGF and HGF. Studies of mechanisms of recruitment to the receptors showed that HGF induced co-precipitation of Gab1 and Met while EGF induced binding of Gab1 to Grb2 but not to EGFR. Gab1 activation in response to both EGF and HGF was dependent on PI3K. While EGF activated Gab1 and Shc equally, within the same concentration range, HGF very potently and almost exclusively activated Gab1, having only a minimal effect on Shc. Collectively, our results strongly suggest that although Gab1 interacts differently with EGFR and Met, it is involved in mitogenic signalling mediated by both these growth factor receptors in hepatocytes.  相似文献   

17.
B cell antigen receptor (BCR) signaling causes tyrosine phosphorylation of the Gab1 docking protein. This allows phosphatidylinositol 3-kinase (PI3K) and the SHP2 tyrosine phosphatase to bind to Gab1. In this report, we tested the hypothesis that Gab1 acts as an amplifier of PI3K- and SHP2-dependent signaling in B lymphocytes. By overexpressing Gab1 in the WEHI-231 B cell line, we found that Gab1 can potentiate BCR-induced phosphorylation of Akt, a PI3K-dependent response. Gab1 expression also increased BCR-induced tyrosine phosphorylation of SHP2 as well as the binding of Grb2 to SHP2. We show that the pleckstrin homology (PH) domain of Gab1 is required for BCR-induced phosphorylation of Gab1 and for Gab1 participation in BCR signaling. Moreover, using confocal microscopy, we show that BCR ligation can induce the translocation of Gab1 from the cytosol to the plasma membrane and that this requires the Gab1 PH domain as well as PI3K activity. These findings are consistent with a model in which the binding of the Gab1 PH domain to PI3K-derived lipids brings Gab1 to the plasma membrane, where it can be tyrosine-phosphorylated and then act as an amplifier of BCR signaling.  相似文献   

18.
Grb2-associated binder 1 (Gab1) coordinates various receptor tyrosine kinase signaling pathways. Although skeletal muscle differentiation is regulated by some growth factors, it remains elusive whether Gab1 coordinates myogenic signals. Here, we examined the molecular mechanism of insulin-like growth factor-I (IGF-I)-mediated myogenic differentiation, focusing on Gab1 and its downstream signaling. Gab1 underwent tyrosine phosphorylation and subsequent complex formation with protein-tyrosine phosphatase SHP2 upon IGF-I stimulation in C2C12 myoblasts. On the other hand, Gab1 constitutively associated with phosphatidylinositol 3-kinase regulatory subunit p85. To delineate the role of Gab1 in IGF-I-dependent signaling, we examined the effect of adenovirus-mediated forced expression of wild-type Gab1 (Gab1(WT)), mutated Gab1 that is unable to bind SHP2 (Gab1(DeltaSHP2)), or mutated Gab1 that is unable to bind p85 (Gab1(Deltap85)), on the differentiation of C2C12 myoblasts. IGF-I-induced myogenic differentiation was enhanced in myoblasts overexpressing Gab1(DeltaSHP2), but inhibited in those overexpressing either Gab1(WT) or Gab1(Deltap85). Conversely, IGF-I-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation was significantly repressed in myoblasts overexpressing Gab1(DeltaSHP2) but enhanced in those overexpressing either Gab1(WT) or Gab1(Deltap85). Furthermore, small interference RNA-mediated Gab1 knockdown enhanced myogenic differentiation. Overexpression of catalytic-inactive SHP2 modulated IGF-I-induced myogenic differentiation and ERK1/2 activation similarly to that of Gab1(DeltaSHP2), suggesting that Gab1-SHP2 complex inhibits IGF-I-dependent myogenesis through ERK1/2. Consistently, the blockade of ERK1/2 pathway reversed the inhibitory effect of Gab1(WT) overexpression on myogenic differentiation, and constitutive activation of the ERK1/2 pathway suppressed the enhanced myogenic differentiation by overexpression of Gab1(DeltaSHP2). Collectively, these data suggest that the Gab1-SHP2-ERK1/2 signaling pathway comprises an inhibitory axis for IGF-I-dependent myogenic differentiation.  相似文献   

19.
Upon the addition of different growth factors and cytokines, the Gab1 docking protein is tyrosine phosphorylated and in turn activates different signaling pathways. On the basis of the large body of evidence concerning cross talk between the signaling pathways activated by growth factors and oxidative stress, we decided to investigate the role of Gab1 in oxidative injury. We stimulated wild-type mouse embryo fibroblasts (MEF) or MEF with a homozygous deletion of the Gab1 gene (-/- MEF) with H(2)O(2). Our results show that Gab1 is phosphorylated in a dose- and time-dependent manner after H(2)O(2) triggering. Gab1 then recruits molecules such as SHP2, phosphatidylinositol 3-kinase (PI3K), and Shc. Gab1 phosphorylation is sensitive to the Src family kinase inhibitor PP2. Furthermore, we demonstrate that Gab1 is required for H(2)O(2)-induced c-Jun N-terminal kinase (JNK) activation but not for ERK2 or p38 activation. Reconstitution of Gab1 in -/- MEF rescues JNK activation, and we find that this is dependent on the SHP2 binding site in Gab1. Cell viability assays reveal that Gab1 has a dual role in cell survival: a positive one through its interaction with PI3K and a negative one through its interaction with SHP2. This is the first report identifying Gab1 as a component in oxidative stress signaling and one that is required for JNK activation.  相似文献   

20.
Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses   总被引:22,自引:0,他引:22  
Gab1 is a substrate of the receptor tyrosine kinase c-Met and involved in c-Met-specific branching morphogenesis. It associates directly with c-Met via the c-Met-binding domain, which is not related to known phosphotyrosine-binding domains. In addition, Gab1 is engaged in a constitutive complex with the adaptor protein Grb2. We have now mapped the c-Met and Grb2 interaction sites using reverse yeast two-hybrid technology. The c-Met-binding site is localized to a 13-amino acid region unique to Gab1. Insertion of this site into the Gab1-related protein p97/Gab2 was sufficient to confer c-Met-binding activity. Association with Grb2 was mapped to two sites: a classical SH3-binding site (PXXP) and a novel Grb2 SH3 consensus-binding motif (PX(V/I)(D/N)RXXKP). To detect phosphorylation-dependent interactions of Gab1 with downstream substrates, we developed a modified yeast two-hybrid assay and identified PI(3)K, Shc, Shp2, and CRKL as interaction partners of Gab1. In a trk-met-Gab1-specific branching morphogenesis assay, association of Gab1 with Shp2, but not PI(3)K, CRKL, or Shc was essential to induce a biological response in MDCK cells. Overexpression of a Gab1 mutant deficient in Shp2 interaction could also block HGF/SF-induced activation of the MAPK pathway, suggesting that Shp2 is critical for c-Met/Gab1-specific signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号