首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 0.1-5 mM misonidazole and SR 2508 on hypoxic V79 cellular survival at acute (498 cGy/min) and low (890 and 933 cGy/h) irradiation dose rates was measured and compared. The experiments were designed to delineate the oxygen mimetic phenomenon and the preincubation effect of these chemicals at these dose rates. Linear regression analysis of the survival data in terms of the linear quadratic model yielded values of alpha and beta. In the absence of drug, the linear coefficient was independent of dose rate, whereas the quadratic term was greatly reduced at low dose rate. At all dose rates, the preincubation effect affected primarily the alpha term, with little influence on beta. In contrast, the oxygen mimetic phenomenon predominantly affected the beta term. Overall, the radiosensitizing ability of these drugs was higher at low dose rate than at acute dose rate.  相似文献   

2.
The radiosensitization of Chinese hamster V79 cells in vitro by air and misonidazole at low X-ray doses (0.2-6.0 Gy) had been studied. These survival data, together with high-dose data, were fitted to the linear quadratic model ln S = -(alpha D + beta D2), deriving estimates of alpha and beta by six different methods to illustrate the influence of the statistical treatment on the values so derived. This in vitro study clearly demonstrated that the survival parameters alpha and beta are dependent to some degree on the method of analysis of the raw survival data; however, their ratios, the values of oxygen enhancement ratios (OERs) and radiosensitizer enhancement ratios (SERs) derived from the different methods, are similar. All methods of analysis give reduced OERs at low radiation doses for combined low- and high-dose X-ray data. However, the OERs are still appreciably high, ranging from 2.45 to 2.50 for an oxic dose of 2 Gy. All methods of analysis gave reduced SERs at low doses for combined low and high X-ray dose data for hypoxic cells irradiated in 1 mmol dm-3 misonidazole. At survival levels corresponding to doses of 2 Gy in the presence of 1 mmol dm-3 misonidazole and SERs ranged from 1.2 to 1.5.  相似文献   

3.
Cells deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) show increased yields of both simple and complex chromosomal aberrations after high doses (>0.5Gy) of ionizing radiation (X-rays or γ-rays), however less is known on how these cells respond at low dose. Previously we had shown that the increased chromosome aberrations in ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex exchanges. The linear dose-response term for simple exchanges was significantly higher in NBS cells compared to wild type cells, but not for AT cells. However, AT cells have a high background level of exchanges compared to wild type or NBS cells that confounds the understanding of low dose responses. To understand the sensitivity differences for high to low doses, chromosomal aberration analysis was first performed at low dose-rates (0.5Gy/d), and results provided further evidence for the lack of sensitivity for exchanges in AT cells below doses of 1Gy. Normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, showed increased numbers of exchanges at a dose of 1Gy and higher, but were similar to wild type cells at 0.5Gy or below. These results were confirmed using siRNA knockdown of ATM. The present study provides evidence that the increased radiation sensitivity of AT cells for chromosomal exchanges found at high dose does not occur at low dose.  相似文献   

4.
A decreased oxygen enhancement ratio (OER) at lower radiation doses has been previously reported (B. Palcic, J. W. Brosing, and L. D. Skarsgard, Br. J. Cancer 46, 980-984 (1984]. The question remained whether or not this effect is due to a possible oxygen contamination at low doses, which was not the case at high doses. To ensure a sufficient degree of hypoxia prior to the start of irradiation, Chinese hamster cells (CHO) were made hypoxic by gas exchange combined with metabolic consumption of oxygen at 37 degrees C. At the same time oxygen levels in cell suspension were measured using a Clark electrode. It was found that under experimental conditions used in this laboratory for hypoxic irradiations, the oxygen levels before the start of irradiation are always below the levels which could give any significant enhancement to radiation inactivation by X rays. Full survival curves were determined in the dose range 0-30 Gy using the conventional survival assay and in the dose range 0-3 Gy using the low dose survival assay. The results confirmed the earlier finding that the OER decreases at low doses. It is therefore believed that the dose-dependent OER is a true radiobiological phenomenon and not an artifact of the experimental method used in the low dose survival assay.  相似文献   

5.
Jejunal crypt survival after fractionated total body irradiation of C3H mice given at dose rates between 1.2 and 0.08 Gy/min was studied and the results analysed according to the linear quadratic model. Whereas alpha was independent of dose rate beta decreased with dose rate to approach zero at about 0.01 Gy/min. During the period of recovery, sublethal damage from doses given at high dose rate interact with low dose rate irradiation given immediately after, and increases its effectiveness.  相似文献   

6.
Previous studies have indicated that thyroid cancer risk after a first childhood malignancy is curvilinear with radiation dose, increasing at low to moderate doses and decreasing at high doses. Understanding factors that modify the radiation dose response over the entire therapeutic dose range is challenging and requires large numbers of subjects. We quantified the long-term risk of thyroid cancer associated with radiation treatment among 12,547 5-year survivors of a childhood cancer (leukemia, Hodgkin lymphoma and non-Hodgkin lymphoma, central nervous system cancer, soft tissue sarcoma, kidney cancer, bone cancer, neuroblastoma) diagnosed between 1970 and 1986 in the Childhood Cancer Survivor Study using the most current cohort follow-up to 2005. There were 119 subsequent pathologically confirmed thyroid cancer cases, and individual radiation doses to the thyroid gland were estimated for the entire cohort. This cohort study builds on the previous case-control study in this population (69 thyroid cancer cases with follow-up to 2000) by allowing the evaluation of both relative and absolute risks. Poisson regression analyses were used to calculate standardized incidence ratios (SIR), excess relative risks (ERR) and excess absolute risks (EAR) of thyroid cancer associated with radiation dose. Other factors such as sex, type of first cancer, attained age, age at exposure to radiation, time since exposure to radiation, and chemotherapy (yes/no) were assessed for their effect on the linear and exponential quadratic terms describing the dose-response relationship. Similar to the previous analysis, thyroid cancer risk increased linearly with radiation dose up to approximately 20 Gy, where the relative risk peaked at 14.6-fold (95% CI, 6.8-31.5). At thyroid radiation doses >20 Gy, a downturn in the dose-response relationship was observed. The ERR model that best fit the data was linear-exponential quadratic. We found that age at exposure modified the ERR linear dose term (higher radiation risk with younger age) (P < 0.001) and that sex (higher radiation risk among females) (P = 0.008) and time since exposure (higher radiation risk with longer time) (P < 0.001) modified the EAR linear dose term. None of these factors modified the exponential quadratic (high dose) term. Sex, age at exposure and time since exposure were found to be significant modifiers of the radiation-related risk of thyroid cancer and as such are important factors to account for in clinical follow-up and thyroid cancer risk estimation among childhood cancer survivors.  相似文献   

7.
The chromosome damage induced by the doses of y-irradiation 6)Co in peripheral blood lymphocytes was studied using different cytogenetic assays. Isolated lymphocytes were exposed to 0.01-1.0 Gy, stimulated by PHA, and analysed for chromosome aberrations at 48 h postirradiation by metaphase method, at 49 h--by the anaphase method, at 58 h by micronucleus assay with cytochalasin B and, additionally, micronuclei were counted at 48 h on the slides prepared for the metaphase analysis without cytochalasin B. Despite of the quantitative differences in the amount of chromosome damage revealed by different methods all of them demonstrated complex nonlinear dose dependence of the frequency of aberrant cells and aberrations. At the dose range from 0.01 Gy to 0.05-0.07 Gy the cells had the highest radiosensitivity mainly due to chromatid-type aberration induction. With dose increasing the frequency of the aberrant cells and aberrations decreased significantly (in some cases to the control level). At the doses up to 0.5-0.7 Gy the dose-effect curves have become linear with the decreased slope compare to initial one (by factor of 5 to 10 for different criteria) reflecting the higher radioresistance of cells. These data confirm the idea that the direct linear extrapolation of high dose effect to low dose range--the procedure routinelly used to estimate genetic risk of low dose irradiation--cannot be effective and may lead to underestimation of chromosome damage produced by low radiation doses. Preferences and disadvantages of used cytogenetic assays and possible mechanisms of low ionising radiation doses action were discussed.  相似文献   

8.
Increased fractionation spares late reacting normal tissues more than acute reacting normal tissues. A linear quadratic model is valid from large dose per fraction down to dose per fraction of 2 Gy. Experimental studies on animals and clinical studies on the spinal cord tolerance have shown incidences of myelopathy at doses lower than 50 Gy. The α/β value of the linear quadratic model have been lower for low doses per fraction, indicating a sparing effect of altered fractionation for spinal cord myelitis. Animal data, clinical and radiobiological explanations suggest limitation of the radiobiological models. Further data suggest that one must not assume the spinal cord to have a greater tolerance at doses per fraction below the conventional dose per fraction of 2 Gy.  相似文献   

9.
Hypoxic BP-8 murine sarcoma cells were exposed to misonidazole and/or radiation and the kinetics and extent of cell death were evaluated with the [125I]iododeoxyuridine-prelabeling assay. Cell death after treatment with lethal doses of misonidazole was rapid and essentially complete within 2 or 3 days after drug exposure. In contrast, radiation death became apparent only after a delay period of 4 days and was complete by Day 10 after irradiation. Radiosensitization by short exposures to sublethal doses of misonidazole affected only the delayed component of cell death, that is, the radiation component of death. In experiments involving sequential radiation and drug treatment, prior irradiation of cells did not enhance the direct cytocidal effects of misonidazole, as evidenced by the fact that the early component of cell death was equal in control and preirradiated cells. However, postirradiation treatment with misonidazole did enhance the delayed radiation component of cell death. These results suggest that radiosensitization and direct killing by misonidazole are two distinct phenomena mediated by different cellular mechanisms, and radiosensitization by misonidazole represents a two-component effect composed of true dose modification and dose additive damage interactions, but these additive effects must occur at a site different from the cellular structure responsible for direct drug-induced cell death.  相似文献   

10.
The influence of dose rate on expression time, cell survival and mutant frequency at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus was evaluated in human G(0) peripheral blood lymphocytes exposed in vitro to gamma rays at low (0.0014 Gy/min) and high (0.85 Gy/min) dose rates. A cloning assay performed on different days of postirradiation incubation indicated an 8-day maximum expression period for the induction of HPRT mutants at both high and low dose rates. Cell survival increased markedly with decreasing dose rate, yielding D(0) values of 3.04 Gy and 1.3 Gy at low and high dose rates, respectively. The D(0) of 3.04 Gy obtained at low dose rate could be attributed to the repair of sublethal DNA damage taking place during prolonged exposure to low-LET radiation. Regression analysis of the mutant frequency yielded slopes of 12.35 x 10(-6) and 3.66 x 10(-6) mutants per gray at high and low dose rate, respectively. A dose and dose-rate effectiveness factor of 3.4 indicated a marked dose-rate effect on the induced HPRT mutant frequency. The results indicate that information obtained from in vitro measurements of dose-rate effects in human G(0) lymphocytes may be a useful parameter for risk estimation in radiation protection.  相似文献   

11.
Prolonged exposures to misonidazole (MISO) in vitro under hypoxic conditions result in radiosensitization which is characterized by a decrease in the size of the radiation survival curve shoulder for cells irradiated under hypoxic or aerobic conditions after drug removal. Although intracellular glutathione (GSH) was depleted during hypoxic exposures to MISO, this could not account for the dose-additive radiosensitization (decrease in shoulder size) since GSH depletion by diethylmaleate had no effect on the sensitivity of cells irradiated in air. The alkaline elution assay was used to measure DNA strand breaks and their repair after exposure to MISO, graded doses of X rays, and the combination of MISO pretreatment with X rays. The elution rate of DNA from irradiated cells increased linearly with X-ray dose, with and without MISO pretreatment. However, the DNA elution rates measured after MISO pretreatment were greater by a constant amount at all X-ray doses greater than 1 Gy. In terms of both cell survival and DNA elution rate, MISO-pretreated cells behaved as though they had received an extra 1.5 Gy. Although the initial damage after X rays was greater in MISO-pretreated cells, there was no effect of MISO pretreatment on the rate of repair of radiation-induced DNA strand breaks. The agreement between the differences in survival levels and DNA elution rates for irradiated control and MISO-pretreated cells and absence of an effect on DNA repair rates suggest that the pretreatment sensitization is due to an additive interaction of damage at the DNA level.  相似文献   

12.
The genotoxicity of alpha particles in human embryonic skin fibroblasts   总被引:1,自引:0,他引:1  
Cell inactivation and induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus have been measured in cultured human fibroblasts (GM10) exposed to alpha particles from 238Pu (LET at the cell surface was 100 keV/microns) and 250 kVp X rays. The survival curves resulting from exposure to alpha particles are exponential. The mean lethal dose, D0, is approximately 1.3 Gy for X rays and 0.25 Gy for alpha particles. As a function of radiation dose, mutation induction at the HGPRT locus was linear for alpha particles whereas the X-ray-induced mutation data were better fitted by a quadratic function. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in cells exposed to alpha particles than to X rays.  相似文献   

13.
The partial tolerance type of 'top-up' experiment has been investigated to determine the resolution of this approach for studying the damage to mouse skin from very small doses of X-rays and neutrons. The effect of 20 fractions, each as small as 0.10 Gy of X-rays or of 0.05 Gy of neutrons, can be detected if 3 MeV neutrons are used as the 'top-up' reference radiation. This capability results from the almost linear underlying dose-response curve and highly reproducible dose-effect relationship for the low energy neutrons. The data fit the linear quadratic model of dose fractionation for X-rays down to fractional doses of 0.75 Gy, but at lower doses there is a trend towards an increase in the skin radiosensitivity. Modelling shows that this might be consistent with a sub-population of the cells showing an exceptional radiosensitivity, and a replenishment of this subpopulation occurring in the 8 h between small dose fractions. More experiments are needed at very low doses in order to confirm this hypothesis for skin and for other tissues.  相似文献   

14.
We have measured rejoining kinetics of chromosome breaks using a modified cell fusion-based premature chromosome condensation (PCC) technique in confluent cultures of normal human fibroblasts irradiated at low doses of X-rays. In order to enhance the sensitivity of the fusion-based PCC assay, we added a DNA double strand break (DSB) repair inhibitor wortmannin during the incubation period for PCC/fusion process resulting in a significantly higher yield of G1-type chromosome breaks. The initial number of chromosome breaks (without repair) gave a linear dose response with about 10 breaks per cell per Gy which is about two times higher than the value with the conventional G1-type PCC method. The chromosome rejoining kinetics at 0.5 and 2.0 Gy X-rays reveal a bi-phasic curve with both a fast and a slow component. The fast component (0-30 min) is nearly identical for both doses, but the slow component for 2 Gy kinetics is much slower than that for 0.5 Gy, indicating that the process occurring during this period may be crucial for the ultimate fate of irradiated cells. The chromosome rejoining kinetics obtained here is similar to that of other methods of detecting DNA DSB repair such as the gammaH2AX assay. Our chromosome repair assay is useful for evaluating the accuracy of other assays measuring DNA DSB repair at doses equal or less than 0.5 Gy of ionizing radiation.  相似文献   

15.
In vivo postirradiation protection by a vitamin E analog, alpha-TMG   总被引:2,自引:0,他引:2  
The water-soluble vitamin E derivative alpha-TMG is an excellent radical scavenger. A dose of 600 mg/kg TMG significantly reduced radiation clastogenicity in mouse bone marrow when administered after irradiation. The present study was aimed at investigating the radioprotective effect of postirradiation treatment with alpha-TMG against a range of whole-body lethal (8.5-12 Gy) and sublethal (1-5 Gy) doses of radiation in adult Swiss albino mice. Protection against lethal irradiation was evaluated from 30-day mouse survival and against sublethal doses was assessed from micronuclei and chromosomal aberrations in the bone marrow 24 h after irradiation. An intraperitoneal injection of 600 mg/kg TMG within 10 min of lethal irradiation increased survival, giving a dose modification factor (DMF) of 1.09. TMG at doses of 400 mg/kg and 600 mg/kg significantly reduced the percentage of aberrant metaphases, the different types of aberrations, and the number of micronucleated erythrocytes. DMFs of 1.22 and 1.48 for percentage aberrant metaphases and 1.6 and 1.98 for micronuclei were obtained for 400 mg/kg and 600 mg/kg TMG, respectively. No drug toxicity was observed at these doses. The effectiveness of TMG when administered postirradiation suggests its possible utility for protection against unplanned radiation exposures.  相似文献   

16.
The function of melanocytes, i.e., pigmentation, was studied after doses of radiation given in one to eight fractions ranging from 0.9 to 4.0 Gy by quantifying depigmentation of particular (zig-zag) hairs in resting phase in the mouse. Considerable variability in response was noted, perhaps related to variations in growth status of the hair follicle. The slope of the single-dose survival curve is described by a D0 value of 1.47 Gy over a dose range 5 to 10 Gy. A weighted, nonlinear regression analysis of the multifraction data gave estimates of alpha/beta of 6.5 Gy for the linear quadratic model. The same analysis suggests that there are about four clonogenic melanocytes per hair follicle. There was a fluctuating pattern of recovery in the early hours after exposure to a dose of 4.0 Gy but no evidence of melanocyte regeneration up to 4 days. However, a characteristic of the data was its variability, suggesting that the radiation response of melanocytes over the dose range 0.9 to 10 Gy may be very variable, reflecting, perhaps, variability in the kinetic status of the melanocyte.  相似文献   

17.
18.
The relationship of ionizing radiation to the age-related ophthalmological findings of the 1978-1980 ophthalmological examination of A-bomb survivors of Hiroshima and Nagasaki has been reanalyzed using DS86 eye organ dose estimates. The main purpose of this reevaluation was to determine whether age and radiation exposure, as measured using the recently revised dosimetry information (DS86), have an additive, synergistic, or antagonistic effect. The data in this study are limited to axial opacities and posterior subcapsular changes, for which a definite radiation-induced effect has been observed in Hiroshima and Nagasaki A-bomb survivors. The best model fitting for axial opacities gives a significant positive effect for both linear dose and linear age-related regression coefficients and a significant negative effect for an interaction between radiation dose and age. Such a negative interaction implies an antagonistic effect in that the relative risks in relation to radiation exposure doses become smaller with an increase in age. On the other hand, the best-fitting relationship for posterior subcapsular changes suggested a linear-quadratic dose and linear age-related effect. The estimate of the quadratic dose coefficient shows a highly negative correlation with age, but the negative quadratic dose term is extremely small and is of little biological significance.  相似文献   

19.
A new complex of tetrachloroplatinum(II) and the azoic diazo dye, Fast Black K, Pt(Fast Black)2, was made in an attempt to produce an uncharged molecule which could readily gain access into cells and could bring a high concentration of tetrachloroplatinum into the vicinity of the DNA. Even the lowest concentration of Pt(Fast Black)2 tested in the superhelical pBR322 plasmid DNA assay in vitro completely converted the superhelical DNA to the circular and linear forms by 24 h. When the cytotoxicity of the Pt(Fast Black)2 and Fast Black were tested in exponentially growing EMT6 cells. Pt(Fast Black)2 was slightly more toxic to normally oxygenated than to hypoxic cells at pH 7.40, but was far more toxic to cells at pH 6.45 with no difference based on cellular oxygenation. Fast Black was much less toxic than Pt(Fast Black)2 and its cytotoxicity was unaffected by pH. Pt(Fast Black)2 had a small radiosensitizing effect on hypoxic EMT6 cells with a dose-modifying factor of 1.3, but exposure to the drug entirely removed the shoulder region on the radiation survival curves for both the oxygenated and hypoxic cells. In contrast, Fast Black reduced the shoulder in hypoxic but not in oxygenated cells. When Pt(Fast Black)2 (500 mg/kg), Fast Black (300 mg/kg) (the maximally tolerated dose), or misonidazole (1 g/kg) were given intraperitoneally 15 min prior to irradiation of FSaIIC tumors with 0, 10, 20, or 30 Gy, Pt(Fast Black)2 alone caused a tumor growth delay of 6 days versus 3 days for Fast Black. With radiation, Pt(Fast Black)2 produced the greatest enhancement in tumor growth delay of the drugs tested, especially at the lowest (10 Gy) radiation dose (i.e., in the in vivo "shoulder region"). These results indicate that Pt(Fast Black)2 may be suitable for clinical development because it causes both significant direct cytotoxicity and enhancement of radiation killing. The fact that its cytotoxicity is markedly increased at an acidic pH and its radiation enhancing effects are greatest in combination with relatively low single-fraction radiation doses make it especially interesting. The cytotoxicity of Pt(Fast Black)2 may be influenced by the tumor environment, and the radiosensitizing properties appear well suited for use with radiation fraction sizes that are employed in the clinic.  相似文献   

20.
Data from Argonne National Laboratory on lung cancer in 15,975 mice with acute and fractionated exposures to gamma rays and neutrons are analyzed with a biologically motivated model with two rate-limiting steps and clonal expansion. Fractionation effects and effects of radiation quality can be explained well by the estimated kinetic parameters. Both an initiating and a promoting action of neutrons and gamma rays are suggested. While for gamma rays the initiating event is described well with a linear dose-rate dependence, for neutrons a nonlinear term is needed, with less effectiveness at higher dose rates. For the initiating event, the neutron RBE compared to gamma rays is about 10 when the dose rate during each fraction is low. For higher dose rates this RBE decreases strongly. The estimated lifetime relative risk for radiation-induced lung cancers from 1 Gy of acute gamma-ray exposure at an age of 110 days is 1.27 for male mice and 1.53 for female mice. For doses less than 1 Gy, the effectiveness of fractionated exposure to gamma rays compared to acute exposure is between 0.4 and 0.7 in both sexes. For lifetime relative risk, the RBE from acute neutrons at low doses is estimated at about 10 relative to acute gamma-ray exposure. It decreases strongly with dose. For fractionated neutrons, it is lower, down to about 4 for male mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号