首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Fructose-1,6-bisphosphatase was precipitated with purified rabbit antiserum from extracts of 32P-orthophosphate labelled yeast cells, submitted to SDS polyacrylamide gel electrophoresis, extracted from the gels and counted for radioactivity due to 32P incorporation. Fructose-1,6-bisphosphatase from glucose starved yeast cells contained a very low 32P label. During 3 min treatment of the glucose starved cells with glucose the 32P-label increased drastically. Subsequent incubation of the cells in an acetate containing, glucose-free medium led to a label which was again low. Analysis for phosphorylated amino acids in the immunpprecipitated fructose-1,6-bisphosphatase protein from the 3 min glucose-inactivated cells exhibited phospho-serine as the only labelled phosphoamino acid. These data demonstrate a phosphorylation of a serine residue of fructose-1,6-bisphosphatase during this 3 min glucose treatment of glucose starved cells. A concomitant about 60 % inactivation of the enzyme had been shown to occur. The data in addition show a release of the esterified phosphate from the enzyme upon incubation of cells in a glucose-free medium, a treatment which leads to peactivation of enzyme activity. A protein kinase and a protein phosphatase catalysing this metabolic interconversion of fructose-1,6-bisphosphatase are postulated. It is assumed that metabolites accumulating after the addition of glucose exert a positive effect on the kinase activity and/or have a negative effect on the phosphatase activity. A role of the enzymic phosphorylation of fructose-1,6-bisphosphatase in the initiation of complete proteolysis of the enzyme during “catabolite inactivation” is discussed.  相似文献   

2.
Catabolite inactivation of fructose 1,6-bisphosphatase and cytoplasmic malate dehydrogenase was studied using the protease-deficient and vacuole-defective yeast strain pep4-3. The catabolite inactivation of fructose 1,6-bisphosphatase in pep4-3 was found to have a normal first inactivation step but with a defective second proteolytic step. In contrast, catabolite inactivation of cytoplasmic malate dehydrogenase was normal in pep4-3. These results suggest that the proteolytic pathways utilized in the hydrolysis of the two enzymes may be different and that proteolysis of fructose 1,6-bisphosphatase may require functional vacuoles while proteolysis of cytoplasmic malate dehydrogenase may not.  相似文献   

3.
The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is subjected to catabolite inactivation and degradation when glucose-starved cells are replenished with fresh glucose. In various studies, the proteasome and the vacuole have each been reported to be the major site of FBPase degradation. Because different growth conditions were used in these studies, we examined whether variations in growth conditions could alter the site of FBPase degradation. Here, we demonstrated that FBPase was degraded outside the vacuole (most likely in the proteasome), when glucose was added to cells that were grown in low glucose media for a short period of time. By contrast, cells that were grown in the same low glucose media for longer periods of time degraded FBPase in the vacuole in response to glucose. Another gluconeogenic enzyme malate dehydrogenase (MDH2) showed the same degradation characteristics as FBPase in that the short term starvation of cells led to a non-vacuolar degradation, whereas long term starvation resulted in the vacuolar degradation of this protein. The N-terminal proline is required for the degradation of FBPase and MDH2 for both the vacuolar and non-vacuolar proteolytic pathways. The cAMP signaling pathway and the phosphorylation of glucose were needed for the vacuolar-dependent degradation of FBPase and MDH2. By contrast, the cAMP-dependent signaling pathway was not involved in the non-vacuolar degradation of these proteins, although the phosphorylation of glucose was required.  相似文献   

4.
Catabolite inactivation of fructose-1,6-bisphosphatase, isocitrate lyase, phosphoenolpruvate carboxykinase and malate dehydrogenase in intact cells could be prevented by phenylmethylsulfonyl fluoride added 40 min prior to the addition of glucose. Protein synthesis, fermentative and respiratory activity and catabolite repression were not affected. Elimination of catabolite inactivation by the addition of PMSF revealed that catabolite repression started at different times for different enzyme.Abbreviation PMSF phenylmethylsulfonyl fluoride  相似文献   

5.
We have determined the nucleotide sequence of the gene for fructose-1,6-bisphosphatase from both Saccharomyces cerevisiae and Schizosaccharomyces pombe. The predicted protein sequence for fructose-1,6-bisphosphatase from S. cerevisiae contains 347 amino acids and has a molecular weight of 38,100; that from S. pombe, contains 346 amino acids and has a molecular weight of 38,380. Comparison of these amino acid sequences with each other and that of pig kidney fructose-1,6-bisphosphatase shows several regions of strong homology separated by regions of divergence. These homologous regions are likely candidates for functional domains. A gene cassette was constructed for fructose-1,6-bisphosphatase from S. cerevisiae and the gene cassette expressed from the regulated PHO5 and GAL1 promoters of yeast. Yeast cells expressing fructose-1,6-bisphosphatase, while growing on glucose, accumulated large amounts of enzyme intracellularly, suggesting that glucose-regulated proteolytic inactivation does not operate efficiently under these conditions. Growth on glucose was not inhibited by the expression of fructose 1,6-bisphosphatase.  相似文献   

6.
Catabolite inactivation of fructose 1,6-bisphosphatase inKluyveromyces fragilis was found to occur as a one-step process with a half-life of approximately 90 min in contrast to the two-step process previously reported forSaccharomyces cerevisiae. No rapid initial 50% loss of activity immediately after a glucose-induced catabolite inactivation was found; nevertheless, fructose 1,6-bisphosphatase was rapidly phosphorylated within 5 min of glucose addition. This result supports the hypothesis that protein phosphorylation serves as a signal for the specific degradation of fructose 1,6-bisphosphatase during catabolite inactivation.  相似文献   

7.
The inactivation of fructose-1,6-bisphosphatase, isocitrate lyase and cytoplasmic malate dehydrogenase in Candida maltosa was found to occur after the addition of glucose to starved cells. The concentration of cyclic AMP and fructose-2,6-bisphosphate increased drastically within 30 s when glucose was added to the intact cells of this yeast. From these results it was concluded that catabolite inactivation, with participation of cyclic AMP and fructose-2,6-bisphosphate, is an important control mechanism of the gluconeogenetic sequence in the n-alkane-assimilating yeast Candida maltosa, as described for Saccharomyces cerevisiae.  相似文献   

8.
Limited tryptic digestion of pig kidney fructose-1,6-bisphosphatase in the presence of magnesium ions results in the formation of an active enzyme derivative which is no longer inhibited by the allosteric effector AMP. The presence of AMP during incubation of fructose-1,6-bisphosphatase with trypsin protects against the loss of AMP inhibition. By contrast, the presence of the nonhydrolyzable substrate analog fructose 2,6-bisphosphate accelerates the rate of formation of that form of fructose-1,6-bisphosphatase which is insensitive to AMP inhibition. Sodium dodecyl sulfate-polyacrylamide electrophoresis of samples taken during trypsin treatment shows that the loss of AMP inhibition parallels the conversion of the native 36,500 molecular weight fructose-1,6-bisphosphatase subunit into a 34,000 molecular weight species. Automated Edman degradation of trypsin-treated fructose-1,6-bisphosphatase following gel filtration shows a single sequence beginning at Gly-26 in the original enzyme, but no changes in the COOH-terminal region of fructose-1,6-bisphosphatase. Thus, the proteolytic product has been characterized as "des-1-25-fructose-1,6-bisphosphatase." A comparison of the kinetic properties of control enzyme and des-1-25-fructose-1,6-bisphosphatase reveals some differences in properties (pH optimum, Ka for Mg2+, K+ activation, inhibition by fructose 2,6-bisphosphate) between the two enzymes, but none is so striking as the complete loss of AMP sensitivity shown by des-1-25-fructose-1,6-bisphosphatase. The loss of AMP inhibition is due to the loss of AMP-binding capacity, but it is not known at this stage whether residues of the AMP site are present in the 25-amino acid NH2-terminal region or the removal of this region leads to a conformational change that abolishes the function of an AMP site located elsewhere in the molecule.  相似文献   

9.
The fructose-1,6-bisphosphatase gene was used with multicopy plasmids to study rapid reversible and irreversible inactivation after addition of glucose to derepressed Saccharomyces cerevisiae cells. Both inactivation systems could inactivate the enzyme, even if 20-fold over-expressed. The putative serine residue, at which fructose-1,6-bisphosphatase is phosphorylated, was changed to an alanine residue without notably affecting the catalytic activity. No rapid reversible inactivation was observed with the mutated enzyme. Nonetheless, the modified enzyme was still irreversibly inactivated, clearly demonstrating that phosphorylation is an independent regulatory circuit that reduces fructose-1,6-bisphosphatase activity within seconds. Furthermore, irreversible glucose inactivation was not triggered by phosphorylation of the enzyme.  相似文献   

10.
Initiation of selective proteolysis by metabolic interconversion   总被引:1,自引:0,他引:1  
After the addition of glucose to acetate- or ethanol-grown yeast cells a small group of selected enzymes is rapidly inactivated. This phenomenon has been called "catabolite inactivation". Among other enzymes participating in gluconeogenesis, fructose-1,6-bisphosphatase is inactivated during this catabolite inactivation process. It was shown by FUNAYAMA et al. (Eur. J. Biochem. 109, 61-66 (1980)) that the mechanism of inactivation is proteolysis. In the present paper evidence is presented that after addition of glucose a covalent conversion of the enzyme protein by phosphorylation of a serine-residue initiates its subsequent proteolysis. It is suggested that the covalent modification triggered by glucose and/or products of its catabolism renders the enzyme susceptible to proteinases and thereby initiates proteolysis of a selected enzyme without the necessity of a specific proteinase present.  相似文献   

11.
Experimental conditions have been elaborated to test for reversibility of the malate dehydrogenase inactivation (E.C.1.1.1.37) after addition of glucose to derepressed yeast cells. Malate dehydrogenase inactivation was shown to be irreversible at all stages of inactivation. In contrast fructose-1,6-bisphosphatase inactivation (E.C.3.1.11) remained reversible for at least 30 min after addition of glucose. Rapid reversible inactivation of fructose-1,6-bisphosphatase and irreversible inactivation of malate dehydrogenase were additionally investigated in glycolytic block mutants. Normal inactivation kinetics were observed in mutants without catalytic activity of phosphoglucose isomerase (E.C.5.3.1.9), phosphofructokinase (E.C.2.7.1.11), triosephosphate isomerase (E.C.5.3.1.1) and phosphoglycerate kinase (E.C.2.7.2.3). Hence, neither type of inactivation depended on the accumulation of any glucose metabolite beyond glucose-6-phosphate. Under anaerobic conditions irreversible inactivation was completely abolished in glycolytic block mutants. In contrast rapid reversible inactivation was independent of energy provided by respiration or fermentation. Reversibility of fructose-1,6-bisphosphatase inactivation was tested under conditions which prevented irreversible malate dehydrogenase inactivation. In these experiments, fructose-1,6-bisphosphatase inactivation remained reversible for at least 120 min, whereas reversibility was normally restricted to about 30 min. This indicated a common mechanism between the irreversible part of fructose-1,6-bisphosphatase inactivation and irreversible malate dehydrogenase inactivation.  相似文献   

12.
Addition of glucose to Saccharomyces cerevisiae inactivates the galactose transporter Gal2p and fructose-1,6-bisphosphatase (FBPase) by a mechanism called glucose- or catabolite-induced inactivation, which ultimately results in a degradation of both proteins. It is well established, however, that glucose induces internalization of Gal2p into the endocytotic pathway and its subsequent proteolysis in the vacuole, whereas FBPase is targeted to the 26 S proteasome for proteolysis under similar inactivation conditions. Here we report that two distinct proteolytic systems responsible for specific degradation of two conditionally short-lived protein targets, Gal2p and FBPase, utilize most (if not all) protein components of the same glucose sensing (signaling) pathway. Indeed, initiation of Gal2p and FBPase proteolysis appears to require rapid transport of those substrates of the Hxt transporters that are at least partially metabolized by hexokinase Hxk2p. Also, maltose transported via the maltose-specific transporter(s) generates an appropriate signal that culminates in the degradation of both proteins. In addition, Grr1p and Reg1p were found to play a role in transduction of the glucose signal for glucose-induced proteolysis of Gal2p and FBPase. Thus, one signaling pathway initiates two different proteolytic mechanisms of catabolite degradation, proteasomal proteolysis and endocytosis followed by lysosomal proteolysis.  相似文献   

13.
A spontaneous mutant of the yeast Candida maltosa SBUG 700 was isolated showing pseudohyphal marphology under all growth conditions tested. The C. maltosa PHM mutant takes up glucose with the kinetics of C. maltosa SBUG 700 and starved cells contain the same cyclic AMP concentration. Addition of glucose to the PHM mutant does not result in an increase of the intracellular cyclic AMP level and in catabolite inactivation of fructose-1,6-bisphosphatase, malate dehydrogenase and phosphoenolpyruvate carboxykinase. However, addition of 2,4-dinitrophenol is followed by a rapid, transient increase of the cyclic AMP level in the mutant cells, but not by catabolite inactivation. These results show that a common mechanism might be responsible for catabolite inactivation and glucose-induced cAMP signaling or that glucose-induced cAMP signaling is required for catabolite inactivation in C. maltosa.  相似文献   

14.
Mutants deficient in the vacuolar (lysosomal) endopeptidases proteinase yscA and proteinase yscB of the yeast Saccharomyces cerevisiae exhibit a drastically reduced protein degradation rate under nutritional stress conditions. The differentiation process of sporulation is considerably disturbed by the absence of the two endopeptidases. Also under vegetative growth conditions and under conditions of false protein synthesis, the two vacuolar endopeptidases exhibit some effect on protein degradation, which is, however, much less pronounced as found under starvation conditions. Proteinase yscA deficiency leads to rapid cell death when glucose-grown cells starve for nitrogen or other nutrients. Whereas overall protein degradation is affected in the endopeptidase mutants, degradation of two distinct false proteins analyzed is not altered in the absence of proteinase yscA and proteinase yscB. Also catabolite inactivation and degradation of fructose-1,6-bisphosphatase is not affected to a greater extent in the endopeptidase-deficient strains.  相似文献   

15.
Schüle T  Rose M  Entian KD  Thumm M  Wolf DH 《The EMBO journal》2000,19(10):2161-2167
The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is synthesized when cells of the yeast Saccharomyces cerevisiae are grown on a non-fermentable carbon source. After shifting the cells to glucose-containing medium, in a process called catabolite degradation, FBPase is selectively and rapidly broken down. We have isolated gid mutants, which are defective in this glucose-induced degradation process. When complementing the defect in catabolite degradation of FBPase in gid3-1 mutant cells with a yeast genomic library, we identified the GID3 gene and found it to be identical to UBC8 encoding the ubiquitin-conjugating enzyme Ubc8p. The in vivo function of Ubc8p (Gid3p) has remained a mystery so far. Here we demonstrate the involvement of Ubc8p in the glucose-induced ubiquitylation of FBPase as a prerequisite for catabolite degradation of the enzyme via the proteasome. Like FBPase, Ubc8p is found in the cytoplasmic fraction of the cell. We demonstrate cytoplasmic degradation of FBPase.  相似文献   

16.
Purified fructose-1,6-bisphosphatase from Saccharomyces cerevisiae was phosphorylated in vitro by purified yeast cAMP-dependent protein kinase. Maximal phosphorylation was accompanied by an inactivation of the enzyme by about 60%. In vitro phosphorylation caused changes in the kinetic properties of fructose-1,6-bisphosphatase: 1) the ratio R(Mg2+/Mn2+) of the enzyme activities measured at 10 mM Mg2+ and 2 mM Mn2+, respectively, decreased from 2.6 to 1.2; 2) the ratio R(pH 7/9) of the activities measured at pH 7.0 and pH 9.0, respectively, decreased from 0.62 to 0.38, indicating a shift of the pH optimum to the alkaline range. However, the affinity of the enzyme for its inhibitors fructose-2,6-bisphosphate (Fru-2,6-P2) and AMP, expressed as the concentration required for 50% inhibition, was not changed. The maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase was 0.6-0.75 mol/mol of the 40-kDa subunit. Serine was identified as the phosphate-labeled amino acid. The initial rate of in vitro phosphorylation of fructose-1,6-bisphosphatase, obtained with a maximally cAMP-activated protein kinase, increased when Fru-2,6-P2 and AMP, both potent inhibitors of the enzyme, were added. As Fru-2,6-P2 and AMP did not affect the phosphorylation of histone by cAMP-dependent protein kinase, the inhibitors must bind to fructose-1,6-bisphosphatase in such a way that the enzyme becomes a better substrate for phosphorylation. Nevertheless, Fru-2,6-P2 and AMP did not increase the maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase beyond that observed in the presence of cAMP alone.  相似文献   

17.
The question of how the loss of regulatory mechanisms for a metabolic enzyme would affect the fitness of the corresponding organism has been addressed. For this, the fructose-1,6-bisphosphatase (FbPase) from Saccharomyces cerevisiae has been taken as a model. Yeast strains in which different controls on FbPase (catabolite repression and inactivation; inhibition by fructose-2,6-bisphosphate and AMP) have been removed have been constructed. These strains express during growth on glucose either the native yeast FbPase, the Escherichia coli FbPase which is insensitive to inhibition by fructose-2,6-bisphosphate, or a mutated E. coli FbPase with low sensitivity to AMP. Expression of the heterologous FbPases increases the fermentation rate of the yeast and its generation time, while it decreases its growth yield. In the strain containing high levels of an unregulated bacterial FbPase, cycling between fructose-6-phosphate and fructose-1,6-bisphosphate reaches 14%. It is shown that the regulatory mechanisms of FbPase provide a slight but definite competitive advantage during growth in mixed cultures.  相似文献   

18.
R T Proffitt  L Sankaran 《Biochemistry》1976,15(13):2918-2925
Optimal conditions necessary for the reversible inactivation of crystalline rabbit muscle phosphofructokinase by homogeneous rabbit liver fructose-1,6-bisphosphatase have been studied. At higher enzyme levels (to 530 mug/ml of phosphofructokinase) the two proteins were mixed and incubated in a pH 7.5 buffer composed of 50 mM Tris-HC1, 2 mM potassium phosphate, and 0.2 mM dithiothreitol. Aliquots were removed at various times and assayed for enzyme activity. A time dependent inactivation of phosphofructokinase caused by 1-2.3 times its weight of fructose-1,6-bisphosphatase was observed at 30, 23, and 0 degree C. This inactivation did not require the presence of adenosine 5'-triphosphate or Mg2+ in the incubation mixture, but an adenosine 5'-triphosphate concentration of 2.7 mM or greater was required in the assay to keep phosphofructokinase in an inactive form. A mixture of activators (inorganic phosphate, (NH4)2SO4, and adenosine 5'-monophosphate), when added to the assay cuvette, restored nearly all of the expected enzyme activity. Incubations with other proteins, including aldolase, at concentrations equal to or greater than the effective quantity of fructose-1,6-bisphosphatase had no inhibitory effect on phosphofructokinase activity. Removal of tightly bound fructose 1,6-bisphosphate from phosphofructokinase could not explain this inactivation, since several analyses of crystalline phosphofructokinase averaged less than 0.1 mol of fructose 1,6-bisphosphate/320 000 g of enzyme. Furthermore, the inactivation occurred in the absence of Mg2+ where the complete lack of fructose-1-6-bisphosphatase activity was confirmed directly. At lower phosphofructokinase concentrations (0.2-2 mug/ml) the inactivation was studied directly in the assay cuvette. Higher ratios of fructose-1,6-bisphosphatase to phosphofructokinase were necessary in these cases, but oleate and 3-phosphoglycerate acted synergistically with lower amounts of fructose-1,6-bisphosphatase to cause inactivation. The inactivation did not occur when high concentrations of fructose 6-phosphate were present in the assay, or when the level of adenosine 5'-triphosphate was decreased. However, the inactivation was found at pH 8, where the effects of allosteric regulators on phosphofructokinase are greatly reduced. Experiments with rat liver phosphofructokinase showed that this enzyme was also subject to inhibition by rabbit liver fructose 1,6-bisphosphatase under conditions similar to those used in the muscle enzyme studies. Attempts to demonstrate direct interaction between phosphofructokinase and fructose-1,6-bisphosphate by physical methods were unsuccessful. Nevertheless, our results suggest that, under conditions which approximate the physiological state, the presence of fructose-1,6bisphosphatase can cause phosphofructokinase to assume an inactive conformation. This interaction may have a significant role in vivo in controlling the interrelationship between glycolysis and gluconeogenesis.  相似文献   

19.
Fructose-1,6-bisphosphatase purified from Saccharomyces cerevisiae is phosphorylated in vitro by a cAMP-dependent protein kinase. The phosphorylation reaction incorporates 1 mol of phosphate/mol of enzyme and is greatly stimulated by fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate acts upon fructose-1,6-bisphosphatase, not on the protein kinase. The phosphorylation of fructose 1,6-bisphosphatase lowers its activity by about 50%. The characteristics of the phosphorylation reaction in vitro show that this modification is responsible for the inactivation of fructose-1,6-bisphosphatase observed in vivo.  相似文献   

20.
Phosphorylation of fructose-1,6-bisphosphatase with cyclic AMP-dependent protein kinase from yeast is accompanied by a 50% decrease in the catalytic activity (Pohlig, G. and Holzer, H. (1985) J. Biol. Chem. 260, 13818-13823). Using reactivation of phoshorylated fructose-1,6-bisphosphatase as assay, a protein phosphatase was about 2,000-fold purified to electrophoretic homogeneity from Saccharomyces cerevisiae. Upon incubation with phosphorylated fructose-1,6-bisphosphatase the purified protein phosphatase not only reverses the 50% inactivation caused by phosphorylation, but also the previously observed change in the pH optimum and in the ratio of activity with Mg2+ or Mn2+. The phosphatase is strongly inhibited by heparin and fluoride. L-Carnitine, orthophosphate, pyrophosphate, and succinate inhibit to 50% at concentrations from 1 to 10 mM. The molecular mass of the native phosphatase was found to be 180,000 Da. Sodium dodecyl sulfate-gel electrophoresis suggested four subunits with a molecular mass of 45,000 Da each. Half-maximal activity was observed with 5 mM Mg2+ or Mn2+, the pH optimum of activity was found at pH 7. Using polyclonal antibodies, disappearance of 32P-labeled fructose-1,6-bisphosphatase and concomitant liberation of the expected amount of inorganic [32P] phosphate was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号