首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Flowering time is a decisive factor in the adaptation of oat. Some oat varieties require low temperatures for floral initiation, a process called vernalization. The objectives of this study were to clone, characterize, and map genes associated with vernalization in oat, and to identify markers linked to quantitative trait loci (QTL) that affect vernalization response. Genetic linkage maps were developed using Diversity Arrays Technology markers in recombinant inbred lines from the oat populations UFRGS 8?×?UFRGS 930605 and UFRGS 881971?×?Pc68/5*Starter. Flowering time and response to vernalization were characterized using field trials and controlled greenhouse experiments, and QTL were identified in two genetic regions on each of the two maps. PCR primer pairs anchored in the conserved coding regions of the Vrn1, Vrn2, and Vrn3 genes from wheat, barley, and Lolium were used to amplify and clone corresponding oat sequences. Cloned sequences corresponding to the targeted genes were recovered for both Vrn1 and Vrn3. A copy of the Vrn3 gene was mapped using a PCR amplicon, and an oat Vrn1 fragment was mapped by restriction fragment length polymorphism analysis. The location of the mapped Vrn1 locus was homologous to major QTL affecting flowering time in other work, and homoeologous to major QTL affecting response to vernalization in this study.  相似文献   

2.
An F2 population was developed from a cross between a mur-cytoplasmic male sterile broccoli line and a restorer Chinese kale line. Phenotypic analysis of F2 plants indicated that the pollen fertility is controlled by two genes and segregated in a duplicate gene interaction mode with a ratio of 15:1. A total of 236 single nucleotide polymorphism (SNP) markers were developed utilizing 1,448 primers designed for production of expressed sequence tag (EST)-SNP markers of Raphanus sativus and analyzed by the dot-blot technique in 205 F2 individuals. A linkage map was constructed with a total of 142 markers and these markers were assigned to nine linkage groups together with simple sequence repeat markers mapped previously on the published linkage maps of Brassica oleracea. The linkage map spanned 909 cM with an average marker distance of 6.4 cM. A fertility restorer locus (Rfm1) was mapped on LG1, corresponding to chromosome 3, along with a flower color locus at a distance of 25 cM. SNP markers flanking the Rfm1 locus were BoCL2642s at a distance of 2.5 cM on one side and BoCL2901s at a distance of 7.5 cM on the other side. All the SNP markers showed homology with Arabidopsis thaliana and Brassica rapa genome sequences. Three pentatricopeptide repeat genes of the P-subfamily, particularly expressed in buds of the restorer line, were identified and these genes could be potential candidate fertility restorer genes.  相似文献   

3.
Carrot is one of the most economically important vegetables worldwide, but genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to develop a saturated genetic linkage map of carrot. We analyzed a set of 900 DArT markers in a collection of plant materials comprising 94 cultivated and 65 wild carrot accessions. The accessions were attributed to three separate groups: wild, Eastern cultivated and Western cultivated. Twenty-seven markers showing signatures for selection were identified. They showed a directional shift in frequency from the wild to the cultivated, likely reflecting diversifying selection imposed in the course of domestication. A genetic linkage map constructed using 188 F2 plants comprised 431 markers with an average distance of 1.1 cM, divided into nine linkage groups. Using previously anchored single nucleotide polymorphisms, the linkage groups were physically attributed to the nine carrot chromosomes. A cluster of markers mapping to chromosome 8 showed significant segregation distortion. Two of the 27 DArT markers with signatures for selection were segregating in the mapping population and were localized on chromosomes 2 and 6. Chromosome 2 was previously shown to carry the Vrn1 gene governing the biennial growth habit essential for cultivated carrot. The results reported here provide background for further research on the history of carrot domestication and identify genomic regions potentially important for modern carrot breeding.  相似文献   

4.
St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] is a warm-season turfgrass commonly grown in the southern USA. In this study, the first linkage map for all nine haploid chromosomes of the species was constructed for cultivar ‘Raleigh’ and cultivar ‘Seville’ using a pseudo-F2 mapping strategy. A total of 160 simple sequence repeat markers were mapped to nine linkage groups (LGs) covering a total distance of 1176.24 cM. To demonstrate the usefulness of the map, quantitative trait loci (QTL) were mapped controlling field winter survival, laboratory-based freeze tolerance, and turf quality traits. Multiple genomic regions associated with these traits were identified. Moreover, overlapping QTL were found for winterkill and spring green up on LG 3 (99.21 cM); turf quality, turf density, and leaf texture on LG 3 (68.57–69.50 cM); and surviving green tissue and regrowth on LGs 1 (38.31 cM), 3 (77.70 cM), 6 (49.51 cM), and 9 (34.20 cM). Additional regions, where QTL identified in both field and laboratory-based/controlled environment freeze testing co-located, provided strong support that these regions are good candidates for true gene locations. These results present the first complete linkage map produced for St. Augustinegrass, providing a template for further genetic mapping. Additionally, markers linked to the QTL identified may be useful to breeders for transferring these traits into new breeding lines and cultivars.  相似文献   

5.
Rapeseed cultivars (Brassica napus L.) can be classified into annual and biennial groups according to their requirement for vernalization in order to induce flowering. The genetic control of these phenotypic differences is not well understood, but this information could be valuable for the design of breeding approaches to accelerate rapeseed improvement. In order to map loci controlling this variation, a doubled haploid population, derived from a cross between annual and biennial cultivars, was evaluated for vernalization requirement and days-to-flowering in a replicated field experiment using three treatments: no vernalization, 4 weeks of vernalization and 8 weeks of vernalization. A linkage map of 132 RFLP loci was used to locate loci controlling these traits. Marker segregation in one region of linkage group 9 was strongly associated with the annual/biennial growth habit in the unvernalized treatment and with days-to-flowering in all three treatments. Two other regions with smaller effects on days-to-flowering were also identified.  相似文献   

6.
The cultivated strawberry, Fragaria × ananassa, is the most economically-important soft-fruit species, but few practical molecular tools for the purpose of marker assisted selection currently exist. As a precursor to the development of such tools, a genetic linkage map was developed from a F1 population comprising 174 seedlings derived from a cross between two F. × ananassa cultivars, ‘Redgauntlet’ × ‘Hapil’. The resultant map is composed of 315 molecular markers—218 microsatellites, 11 gene-specific markers and 86 AFLP and RAPD markers—and spans 3,116 cM. In total, 69 linkage group fragments were recovered, more than the 56 linkage groups expected for the cultivated strawberry, however, all fragments contained a transferable marker that could be associated with one of 56 linkage group scaffolds. The female (Redgauntlet) and male (Hapil) linkage maps are composed, respectively of 170 loci in 32 linkage groups covering 1,675.3 cM and 182 loci in 37 linkage groups covering 1,440.7 cM, with 37 markers common to both maps. The maximum number of markers in one linkage group was 15, the minimum was two. All linkage groups resolved contained at least one transferable marker (SSR or gene-specific) that had been mapped on the diploid Fragaria reference map (FV × FB), and therefore all linkage groups could be identified as homologous to one of the seven diploid Fragaria linkage groups. When marker order was compared to the diploid Fragaria reference map, effectively complete colinearity was observed. However, the occurrence of duplicated loci on homologues of linkage groups FG1 and FG6 provided evidence of a putative chromosomal duplication or translocation event in Fragaria. The development of this linkage map will facilitate the study and dissection of QTL associated with traits of economic importance such as disease resistance and fruit quality, and provides a foundation for the development of markers for the purpose of marker assisted breeding and selection in the cultivated strawberry, F. × ananassa.  相似文献   

7.
Mapping loci controlling vernalization requirement in Brassica rapa   总被引:1,自引:0,他引:1  
Brassica cultivars are classified as biennial or annual based on their requirement for a period of cold treatment (vernalization) to induce flowering. Genes controlling the vernalization requirement were identified in a Brassica rapa F2 population derived from a cross between an annual and a biennial oilseed cultivar by using an RFLP linkage map and quantitative trait locus (QTL) analysis of flowering time in F3 lines. Two genomic regions were strongly associated with variation for flowering time of unvernalized plants and alleles from the biennial parent in these regions delayed flowering. These QTLs had no significant effect on flowering time after plants were vernalized for 6 weeks, suggesting that they control flowering time through the requirement for vernalization. The two B. rapa linkage groups containing these QTLs had RFLP loci in common with two B. napus linkage groups that were shown previously to contain QTLs for flowering time. An RFLP locus detected by the cold-induced gene COR6.6 cloned from Arabidopsis thaliana mapped very near to one of the B. rapa QTLs for flowering time.  相似文献   

8.
The availability of genomic resources such as expressed sequence tag-derived simple sequence repeat (EST-SSR) markers in adaptive genes with high transferability across related species allows the construction of genetic maps and the comparison of genome structure and quantitative trait loci (QTL) positions. In the present study, genetic linkage maps were constructed for both parents of a Quercus robur × Q. robur ssp. slavonica full-sib pedigree. A total of 182 markers (61 AFLPs, 23 nuclear SSRs, 98 EST-SSRs) and 172 markers (49 AFLPs, 21 nSSRs, 101 EST-SSRs, 1 isozyme) were mapped on the female and male linkage maps, respectively. The total map length and average marker spacing were 1,038 and 5.7 cM for the female map and 998.5 and 5.8 cM for the male map. A total of 68 nuclear SSRs and EST-SSRs segregating in both parents allowed to define homologous linkage groups (LG) between both parental maps. QTL for leaf morphological traits were mapped on all 12 LG at a chromosome-wide level and on 6 LG at a genome-wide level. The phenotypic effects explained by each single QTL ranged from 4.0 % for leaf area to 15.8 % for the number of intercalary veins. QTL clusters for leaf characters that discriminate between Q. robur and Quercus petraea were mapped reproducibly on three LG, and some putative candidate genes among potentially many others were identified on LG3 and LG5. Genetic linkage maps based on EST-SSRs can be valuable tools for the identification of genes involved in adaptive trait variation and for comparative mapping.  相似文献   

9.
The genetic linkage map for the common bean (Phaseolus vulgaris L.) is a valuable tool for breeding programs. Breeders provide new cultivars that meet the requirements of farmers and consumers, such as seed color, seed size, maturity, and growth habit. A genetic study was conducted to examine the genetics behind certain qualitative traits. Growth habit is usually described as a recessive trait inherited by a single gene, and there is no consensus about the position of the locus. The aim of this study was to develop a new genetic linkage map using genic and genomic microsatellite markers and three morphological traits: growth habit, flower color, and pod tip shape. A mapping population consisting of 380 recombinant F10 lines was generated from IAC-UNA × CAL143. A total of 871 microsatellites were screened for polymorphisms among the parents, and a linkage map was obtained with 198 mapped microsatellites. The total map length was 1865.9 cM, and the average distance between markers was 9.4 cM. Flower color and pod tip shape were mapped and segregated at Mendelian ratios, as expected. The segregation ratio and linkage data analyses indicated that the determinacy growth habit was inherited as two independent and dominant genes, and a genetic model is proposed for this trait.  相似文献   

10.
Lentil (Lens culinaris ssp. culinaris), is a self-pollinating diploid (2n?=?2x?=?14), cool-season legume crop and is consumed worldwide as a rich source of protein (~24.0%), largely in vegetarian diets. Here we report development of a genetic linkage map of Lens using 114 F2 plants derived from the intersubspecific cross between L 830 and ILWL 77. RAPD (random amplified polymorphic DNA) primers revealed more polymorphism than ISSR (intersimple sequence repeat) and SSR (simple sequence repeat) markers. The highest proportion (30.72%) of segregation distortion was observed in RAPD markers. Of the 235 markers (34 SSR, 9 ISSR and 192 RAPD) used in the mapping study, 199 (28 SSRs, 9 ISSRs and 162 RAPDs) were mapped into 11 linkage groups (LGs), varying between 17.3 and 433.8 cM and covering 3843.4 cM, with an average marker spacing of 19.3 cM. Linkage analysis revealed nine major groups with 15 or more markers each and two small LGs with two markers each, and 36 unlinked markers. The study reported assigning of 11 new SSRs on the linkage map. Of the 66 markers with aberrant segregation, 14 were unlinked and the remaining 52 were mapped. ISSR and RAPD markers were found to be useful in map construction and saturation. The current map represents maximum coverage of lentil genome and could be used for identification of QTL regions linked to agronomic traits, and for marker-assisted selection in lentil.  相似文献   

11.

Key message

An integrated genetic map was constructed for einkorn wheat A genome and provided valuable information for QTL mapping and genome sequence anchoring.

Abstract

Wheat is one of the most widely grown food grain crops in the world. The construction of a genetic map is a key step to organize biologically or agronomically important traits along the chromosomes. In the present study, an integrated linkage map of einkorn wheat was developed using 109 recombinant inbred lines (RILs) derived from an inter sub-specific cross, KT1-1 (T. monococcum ssp. boeoticum) × KT3-5 (T. monococcum ssp. monococcum). The map contains 926 molecular markers assigned to seven linkage groups, and covers 1,377 cM with an average marker interval of 1.5 cM. A quantitative trait locus (QTL) analysis of five agronomic traits identified 16 stable QTL on all seven chromosomes, except 6A. The total phenotypic variance explained by these stable QTL using multiple regressions varied across environments from 8.8 to 87.1 % for days to heading, 24.4–63.0 % for spike length, 48.2–79.6 % for spikelet number per spike, 13.1–48.1 % for plant architecture, and 12.2–26.5 % for plant height, revealing that much of the RIL phenotypic variation had been genetically dissected. Co-localizations of closely linked QTL for different traits were frequently observed, especially on 3A and 7A. The QTL on 3A, 5A and 7A were closely associated with Eps-A m 3, Vrn1 and Vrn3 loci, respectively. Furthermore, this genetic map facilitated the anchoring of 237 T. urartu scaffolds onto seven chromosomes with a physical length of 26.15 Mb. This map and the QTL data provide valuable genetic information to dissect important agronomic and developmental traits in diploid wheat and contribute to the genetic ordering of the genome assembly.
  相似文献   

12.
The nuclear male sterility (NMS) trait is a useful tool for sunflower (Helianthus annuus L.) breeding and genetic programs. Previously, we induced NMS mutants in cultivated line HA 89. The mutants possessed single recessive genes ms 6, ms 7, and ms 8, respectively, in NMS HA 89-872, NMS HA 89-552, and NMS HA 89-747. Bulked segregant analysis based on the male-fertile and male-sterile DNA pools and 560 simple sequence repeat and insertion/deletion markers randomly selected from 17 linkage groups (LGs) were used to locate ms 6 to LG16, ms 7 to LG6, and ms 8 to LG5. Subsequent genotyping of three F2 populations of 88, 93, and 76 individuals confirmed their map positions. Additional polymorphic markers derived from four restriction fragment length polymorphism-converted sequence-tagged site primer pairs were identified. A partial linkage map consisting of eight markers was constructed for the ms 6 locus, covering a region of 69.24 cM, with markers ORS807 and ORS996 flanking the ms 6 locus at distances of 7.2 and 18.5 cM, respectively. Six markers were constructed for ms 7, covering a region of 53.4 cM, with ORS608 and ORS1229 flanking ms 7 at distances of 2.6 and 9.5 cM, respectively. Ten markers were constructed for ms 8, covering a region of 18.0 cM, with six markers below ms 8 and CRT518 above flanking ms 8 at distances of 7.4 and 3.8 cM, respectively. The markers and mapping information will be useful for selection of the recessive NMS genes in sunflower breeding programs.  相似文献   

13.
Single nucleotide polymorphisms (SNPs) were used to construct an integrated SNP linkage map of peach (Prunus persica (L.) Batsch). A set of 1,536 SNPs were evaluated with the GoldenGate® Genotyping assay in two mapping populations, Pop-DF, and Pop-DG. After genotyping and filtering, a final set of 1,400 high quality SNPs in Pop-DF and 962 in Pop-DG with full map coverage were selected and used to construct two linkage maps with JoinMap®4.0. The Pop-DF map covered 422 cM of the peach genome and included 1,037 SNP markers, and Pop-DG map covered 369 cM and included 738 SNPs. A consensus map was constructed with 588 SNP markers placed in eight linkage groups (n?=?8 for peach), with map coverage of 454 cM and an average distance of 0.81 cM/marker site. Placements of SNPs on the “peach v1.0” physical map were compared to placement on the linkage maps and several differences were observed. Using the SNP linkage map of Pop-DG and phenotypic data collected for three harvest seasons, a QTL analysis for fruit quality traits and chilling injury symptoms was carried out with the mapped SNPs. Significant QTL effects were detected for mealiness (M) and flesh bleeding (FBL) QTLs on linkage group 4 and flesh browning (FBr) on linkage group 5. This study represents one of the first examples of QTL detection for quality traits and chilling injury symptoms using a high-density SNP map in a single peach F1 family.  相似文献   

14.
15.
16.
Simple sequence repeats (SSRs) are co-dominant markers, and are very useful in constructing consensus maps in heterozygous perennial plant species like pistachio. Pistacia vera L. is the only cultivated species in the genus Pistacia. It is dioecious with a haploid chromosome count of n =?15. Saturated genetic linkage maps can be a reference to identify markers linked to economically important phenotypic traits that could be useful for early breeding and selection programs. Therefore, this study aimed to develop polymorphic SSR markers in silico and to construct the first SSR-based genetic linkage map in pistachio. The DNA sequences of three cultivars (Siirt, Ohadi, and Bagyolu) of P. vera and one genotype belonging to P. atlantica (Pa-18) were obtained by next-generation sequencing, and 625 polymorphic SSR loci were identified from 750 screened in silico polymorphic SSR primer pairs. The novel SSRs were used to construct SSR-based genetic linkage maps in pistachio along with published SSRs in Siirt × Bagyolu F1 population. Most (71.4%) of the SSRs were common markers that were used to construct consensus and parental maps spanning 15 linkage groups (LGs). A total of 384, 317, and 341 markers were mapped in the consensus, female, and male genetic maps with total lengths of 1511.3, 1427.0, and 1453.4 cM, respectively. The large number of SSR markers discovered and the first SSR-based genetic linkage map constructed in this study will be useful for anchoring loci for map integration, and will facilitate marker-assisted selection efforts for important horticultural traits in the genus Pistacia.  相似文献   

17.
Proso millet (Panicum miliaceum L.) is the cereal crop with the low water requirement and increasingly being used for human consumption. It is the most common rotational crop within wheat-based dryland production systems in the semiarid High Plains of the USA. However, there is no published genetic map for this species, which prevents the identification of quantitative trait loci (QTL). The objectives of the present study were (1) construction of a genetic linkage map and (2) identification of DNA markers linked to QTLs for morpho-agronomic traits. A total of 93 recombinant inbred lines derived from a single F1 (“Huntsman” × “Minsum”) were genotyped with GBS-SNP markers and phenotyped for nine morpho-agronomic traits in the field during 2013 and 2014 at Scottsbluff and Sidney, NE. IciMapping v.4.0.6.0 was used for constructing a genetic linkage map and mapping QTL. The RILs exhibited significant variation for a wide range of traits, and several traits showed evidence of genotype × environment interactions. A total of 833 GBS-SNP markers formed 18 major and 84 minor linkage groups, whereas 519 markers remained ungrouped. A total of 117 GBS-SNP markers were distributed on the 18 major linkage groups spanning a genome length of 2137 cM of proso millet with an average distance of 18 cM between markers. The length and number of markers in each of the 18 major linkage groups ranged from 54.6 to 236 cM and 4 to 12, respectively. A total of 18 QTLs for eight morpho-agronomic traits were detected on 14 linkage groups, each of which explained 13.2–34.7 % phenotypic variance. DNA markers flanking the QTLs were identified, which will aid in marker-assisted selection of these traits. To our knowledge, this is the first genetic linkage map and QTL mapping in proso millet, which will support further genetic analysis and genomics-assisted genetic improvement of this crop.  相似文献   

18.
Male sterility induced by the cytoplasm of Triticum timopheevii Zhuk. has shown potential for hybrid seed production in common wheat (Triticum aestivum L.). As hybrids produced by this method are often partially sterile, fertility restoration is crucial for implementing this technology in breeding practice. Several restorer genes were identified, of which Rf3 is one of the most effective genes for achieving restoration. Previous studies located Rf3 on chromosome 1B in common and spelt wheat. However, the distribution of Rf3 in these taxa remained unclear. In the present study, we genetically mapped Rf3 using a BC1 population derived from CMS-Sperber and the restorer line Primepi (N = 193). After marker validation in four independent BC1 populations and a diversity panel, we evaluated the distribution of Rf3 in 524 common wheat and 30 European spelt genotypes. In the mapping population, the SNP marker IWB72107 cosegregated with Rf3, whereas IWB14060 was mapped 2.0 cM distal on chromosome 1BS. Surveying the linkage between IWB72107 and Rf3 in the four validation populations revealed map distances that ranged from 0.4 to 2.3 cM. Validation of IWB72107 in the diversity panel showed that it is suitable for marker-assisted selection and related applications. Using this marker, we estimated that 8.8% of the common wheat lines and 66.7% of the spelt cultivars carried the restoring Rf3 allele. We propose that Rf3 explains the restoration capacity of a large proportion of European common wheat lines.  相似文献   

19.
Modern sugarcane cultivars (Saccharum spp) are highly polyploïd and aneuploid interspecific hybrids (2n=100–130). Two genetic maps were constructed using a population of 198 progeny from a cross between R570, a modern cultivar, and MQ76-53, an old Australian clone derived from a cross between Trojan (a modern cultivar) and SES528 (a wild Saccharum spontaneum clone). A total of 1,666 polymorphic markers were produced using 37 AFLP primer combinations, 46 SSRs and 9 RFLP probes. Linkage analysis led to the construction of 86 cosegregation groups for R570 and 105 cosegregation groups for MQ76-53 encompassing 424 and 536 single dose markers, respectively. The cumulative length of the R570 map was 3,144 cM, while that of the MQ76-53 map was 4,329 cM. Here, we integrated mapping information obtained on R570 in this study with that derived from a previous map based on a selfed R570 population. Two new genes controlling Mendelian traits were localized on the MQ76-53 map: a gene controlling the red stalk colour was linked at 6.5 cM to an AFLP marker and a new brown rust resistance gene was linked at 23 cM to an AFLP marker. Besides another previously identified brown rust resistance gene (Bru1), these two genes are the only other major genes to be identified in sugarcane so far.  相似文献   

20.
We constructed a framework map using SSR markers in the F2 population derived from a cross between a waxy corn inbred line and a sweet corn inbred line. We constructed a genetic linkage map of the F2:3 population employing 295 SSR markers on 158 F2 individuals produced from the cross. The map comprised a total genomic length of 2,626.5 cM in 10 linkage groups and an average distance between markers of 8.9 cM. The number of loci per linkage group ranged from 27 (chr. 5) to 34 (chr. 7). The genetic distance per linkage group ranged from 213.6 cM (chr. 10) to 360.6 cM (chr. 2). Χ 2 tests revealed that 254 markers (86.1 %) distributed over all 10 chromosomes exhibited a Mendelian segregation ratio of 1:2:1. A total of 14 quantitative trait loci (QTLs) for days to silking (DTS), plant height (PH), ear height (EH), ear height ratio (ER), ear length (L-ear), and setted ear length (L-sear) were found in the 158 F2 progeny. They were mapped to chromosomes 1, 2, 3, 7, 8, and 10. Among them, one QTL was associated with DTS, three with PH, six with EH, one with ER, two with L-ear, and one QTL was related to L-sear. In our study, we found that four QTLs: qDTS1, qEH1a, qEH1b, and qPH1, were clustered between umc2390 and umc1603 on chromosome 1. These new QTLs identified by the present study could serve as useful molecular markers in selecting for yield and agronomic traits in maize. The results of this study may improve the identification and characterization of genes responsible for yield and agronomic traits in waxy corn and sweet corn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号