首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ovine prolactin (oPRL) and striped bass prolactin (sbPRL; Morone saxatilis) on plasma osmolality, electrolyte balance, and gill Na(+),K(+)-ATPase activity were investigated in hypophysectomized (Hx), freshwater (FW)-acclimated, hybrid striped bass (M. saxatilisxMorone chrysops). They were kept in dilute (isoosmotic) seawater for about 10 days after surgery. Seven days after transfer to FW, Hx fish had lower plasma osmolality and lower levels of Na(+), Cl(-), and Ca(2+) than sham-operated and intact fish. Fish were injected four times with oPRL (1, 5, or 20 microg/g body mass), sbPRL (10 or 100 ng/g), or hormone vehicle (0.9% NaCl) at 48-h intervals (days 0, 2, 4, and 6) in FW and then sampled for blood plasma 24 h after the fourth injection (day 7). In Hx fish, oPRL (5 and 20 microg/g) and sbPRL (10 and 100 ng/g) were effective in maintaining plasma osmolality and levels of Na(+), Cl(-), and Ca(2+) above values seen in saline-injected controls. Hypophysectomy did not affect branchial Na(+),K(+)-ATPase activity, but enzyme activity was significantly reduced in Hx fish receiving oPRL (20 mug/g) or sbPRL (10 or 100 ng/g). These results indicate that PRL acts to maintain plasma osmotic and ionic balance in FW-adapted hybrid striped bass, and that this may involve downregulation of branchial Na(+),K(+)-ATPase activity.  相似文献   

2.
The southern flounder is a euryhaline teleost that inhabits ocean, estuarine, and riverine environments. We investigated the osmoregulatory strategy of juvenile flounder by examining the time-course of homeostatic responses, hormone levels, and gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein expression after salinity challenge. Transfer of freshwater (FW)-acclimated flounder to sea water (SW) induced an increase in plasma osmolality and cortisol and a decrease in muscle water content, plasma insulin-like growth factor I (IGF-I) and hepatic IGF-I mRNA, all returning to control levels after 4 days. Gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein levels were elevated in response to SW after 4 days. Transfer of SW-acclimated flounder to FW reduced gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein, increased plasma IGF-I, but did not alter hepatic IGF-I mRNA or plasma cortisol levels. Gill claudin-3 and claudin-4 immunoreactive proteins were elevated in FW versus SW acclimated flounder. The study demonstrates that successful acclimation of southern flounder to SW or FW occurs after an initial crisis period and that the salinity adaptation process is associated with changes in branchial expression of ion transport and putative tight junction claudin proteins known to regulate epithelial permeability in mammalian vertebrates.  相似文献   

3.
Many populations of Arctic char (Salvelinus alpinus) are land-locked, physically separated from the ocean by natural barriers and unable to migrate to sea like anadromous populations. Previous studies which experimentally transferred land-locked Arctic char to seawater report high mortality rates due to osmoregulatory failure and an inability to up-regulate gill Na(+),K(+)-ATPase activity. This study examined the mRNA expression of two recently discovered alpha-subunit isoforms of gill Na(+)K(+)-ATPase (alpha1a and alpha1b) during seawater exposure of land-locked Arctic char. mRNA levels of these gill Na(+),K(+)-ATPasealpha-subunit isoforms were compared to Na(+),K(+)-ATPase activity and protein levels and related to osmoregulatory performance. Land-locked Arctic char were unable to regulate plasma osmolality following seawater exposure. Seawater exposure did not induce an increase in gill Na(+),K(+)-ATPase activity or protein levels. Na(+),K(+)-ATPase isoform alpha1a mRNA quickly decreased upon exposure to seawater, while isoform alpha1b levels were unchanged. These results suggest the inability of land-locked Arctic char to acclimate to seawater is due a failure to up-regulate gill Na(+),K(+)-ATPase activity which may be due to their inability to increase Na(+),K(+)-ATPase alpha1b mRNA expression.  相似文献   

4.
The Mozambique tilapia, Oreochromis mossambicus, is capable of surviving a wide range of salinities and temperatures. The present study was undertaken to investigate the influence of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the tilapia. Fish were acclimated to fresh water (FW), seawater (SW) or double-strength seawater (200% SW) at 20, 28 or 35 degrees C for 7 days. Plasma osmolality increased significantly as environmental salinity and temperature increased. Marked increases in gill Na(+), K(+)-ATPase activity were observed at all temperatures in the fish acclimated to 200% SW. By contrast, Na(+), K(+)-ATPase activity was not affected by temperature at any salinity. Plasma glucose levels increased significantly with the increase in salinity and temperature. Significant correlations were observed between plasma glucose and osmolality. In brain and kidney, content of myo-inositol increased in parallel with plasma osmolality. In muscle and liver, there were similar increases in glycine and taurine, respectively. Glucose content in liver decreased significantly in the fish in 200% SW. Plasma prolactin levels decreased significantly after acclimation to SW or 200% SW. Plasma levels of cortisol and growth hormone were highly variable, and no consistent effect of salinity or temperature was observed. Although there was no significant difference among fish acclimated to different salinity at 20 degrees C, plasma IGF-I levels at 28 degrees C increased significantly with the increase in salinity. Highest levels of IGF-I were observed in SW fish at 35 degrees C. These results indicate that alterations in gill Na(+), K(+)-ATPase activity and glucose metabolism, the accumulation of organic osmolytes in some organs as well as plasma profiles of osmoregulatory hormones are sensitive to salinity and temperature acclimation in tilapia.  相似文献   

5.
Apart from Na(+),K(+)-ATPase, a second sodium pump, Na(+)-stimulated, K(+)-independent ATPase (Na(+)-ATPase) is expressed in proximal convoluted tubule of the mammalian kidney. The aim of this study was to develop a method of Na(+)-ATPase assay based on the method previously used by us to measure Na(+),K(+)-ATPase activity. The ATPase activity was assayed as the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Na(+)-ATPase activity was calculated as the difference between the activities measured in the presence and in the absence of 50 mM NaCl. Na(+)-ATPase activity was detected in the renal cortex (3.5 +/- 0.2 mumol phosphate/h per mg protein), but not in the renal medulla. Na(+)-ATPase was not inhibited by ouabain or an H(+),K(+)-ATPase inhibitor, Sch 28080, but was almost completely blocked by 2 mM furosemide. Leptin administered intraperitoneally (1 mg/kg) decreased the Na(+),K(+)-ATPase activity in the renal medulla at 0.5 and 1 h by 22.1% and 27.1%, respectively, but had no effect on Na(+)-ATPase in the renal cortex. Chronic hyperleptinemia induced by repeated subcutaneous leptin injections (0.25 mg/kg twice daily for 7 days) increased cortical Na(+),K(+)-ATPase, medullary Na(+),K(+)-ATPase and cortical Na(+)-ATPase by 32.4%, 84.2% and 62.9%, respectively. In rats with dietary-induced obesity, the Na(+),K(+)- ATPase activity was higher in the renal cortex and medulla by 19.7% and 34.3%, respectively, but Na(+)-ATPase was not different from control. These data indicate that both renal Na(+)-dependent ATPases are separately regulated and that up-regulation of Na(+)-ATPase may contribute to Na(+) retention and arterial hypertension induced by chronic hyperleptinemia.  相似文献   

6.
The osmoregulatory response of Senegalese sole (Solea senegalensis, Kaup 1858) to 14-day exposure and throughout 17-day exposure to different environmental salinities was investigated. A linear relationship was observed between environmental salinity and gill Na(+),K(+)-ATPase activity whereas kidney Na(+),K(+)-ATPase activity was unaffected. Two osmoregulatory periods could be distinguished according to variations in plasma osmolality: an adjustment period and a chronic regulatory period. No major changes in plasma osmolality and ions levels were registered at the end of the 14- to 17-day exposure period, indicating an efficient adaptation of the osmoregulatory system. Plasma levels of glucose and lactate were elevated in hypersaline water, indicating the importance of these energy substrates in these environments. Glucose was increased during hyper-osmoregulation but only in the adjustment period. Cortisol proved to be a good indicator of chronic stress and stress induced by transfer to the different osmotic conditions. This work shows that S. senegalensis is able to acclimate to different osmotic conditions during short-term exposure.  相似文献   

7.
We investigated the effect of the cyclic AMP-protein kinase A (PKA) signalling pathway on renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase. Male Wistar rats were anaesthetized and catheter was inserted through the femoral artery into the abdominal aorta proximally to the renal arteries for infusion of the investigated substances. Na(+),K(+)-ATPase activity was measured in the presence of Sch 28080 to block ouabain-sensitive H(+),K(+)-ATPase and improve specificity of the assay. Dibutyryl-cyclic AMP (db-cAMP) administered at a dose of 10(-7) mol/kg per min and 10(-6) mol/kg per min increased Na(+),K(+)-ATPase activity in the renal cortex by 34% and 42%, respectively, and decreased it in the renal medulla by 30% and 44%, respectively. db-cAMP infused at 10(-6) mol/kg per min increased the activity of cortical ouabain-sensitive H(+),K(+)-ATPase by 33%, and medullary ouabain-sensitive H(+),K(+)-ATPase by 30%. All the effects of db-cAMP were abolished by a specific inhibitor of protein kinase A, KT 5720. The stimulatory effect on ouabain-sensitive H(+),K(+)-ATPase and on cortical Na(+),K(+)-ATPase was also abolished by brefeldin A which inhibits the insertion of proteins into the plasma membranes, whereas the inhibitory effect on medullary Na(+),K(+)-ATPase was partially attenuated by 17-octadecynoic acid, an inhibitor of cytochrome p450-dependent arachidonate metabolism. We conclude that the cAMP-PKA pathway stimulates Na(+),K(+)-ATPase in the renal cortex as well as ouabain-sensitive H(+),K(+)-ATPase in the cortex and medulla by a mechanism requiring insertion of proteins into the plasma membrane. In contrast, medullary Na(+),K(+)-ATPase is inhibited by cAMP through a mechanism involving cytochrome p450-dependent arachidonate metabolites.  相似文献   

8.
Halenaquinol inhibited the partial reactions of ATP hydrolysis by rat brain cortex Na(+),K(+)-ATPase, such as [3H]ATP binding to the enzyme, Na(+)-dependent front-door phosphorylation from [gamma-(33)P]ATP, and also Na(+)- and K(+)-dependent E(1)<-->E(2) conformational transitions of the enzyme. Halenaquinol abolished the positive cooperativity between the Na(+)- and K(+)-binding sites on the enzyme. ATP and sulfhydryl-containing reagents (cysteine and dithiothreitol) protected the Na(+),K(+)-ATPase against inhibition. Halenaquinol can react with additional vital groups in the enzyme after blockage of certain sulfhydryl groups with 5,5'-dithio-bis-nitrobenzoic acid. Halenaquinol inhibited [3H]ouabain binding to Na(+),K(+)-ATPase under phosphorylating and non-phosphorylating conditions. Binding of fluorescein 5'-isothiocyanate to Na(+),K(+)-ATPase and intensity of fluorescence of enzyme tryptophanyl residues were decreased by halenaquinol. We suggest that interaction of halenaquinol with the essential sulfhydryls in/or near the ATP-binding site of Na(+),K(+)-ATPase resulted in a change of protein conformation and subsequent alteration of overall and partial enzymatic reactions.  相似文献   

9.
Na(+),K(+)-ATPase, a basolateral transporter responsible for tubular reabsorption of Na(+) and for providing the driving force for vectorial transport of various solutes and ions, can also act as a signal transducer in response to the interaction with steroid hormones. At nanomolar concentrations ouabain binding to Na(+),K(+)-ATPase activates a signaling cascade that ultimately regulates several membrane transporters including Na(+),K(+)-ATPase. The present study evaluated the long-term effect of ouabain on Na(+),K(+)-ATPase activity (Na(+) transepithelial flux) and expression in opossum kidney (OK) cells with low (40) and high (80) number of passages in culture, which are known to overexpress Na(+),K(+)-ATPase (Silva et al., 2006, J Membr Biol 212, 163-175). Activation of a signal cascade was evaluated by quantification of ERK1/2 phosphorylation by Western blot. Na(+),K(+)-ATPase activity was determined by electrophysiological techniques and expression by Western blot. Incubation of cells with ouabain induced activation of ERK1/2. Long-term incubation with ouabain induced an increase in Na(+) transepithelial flux and Na(+),K(+)-ATPase expression only in OK cells with 80 passages in culture. This increase was prevented by incubation with inhibitors of MEK1/2 and PI-3K. In conclusion, ouabain-activated signaling cascade mediated by both MEK1/2 and PI-3K is responsible for long-term regulation of Na(+) transepithelial flux in epithelial renal cells. OK cell line with high number of passages is suggested to constitute a particular useful model for the understanding of ouabain-mediated regulation of Na(+) transport.  相似文献   

10.
Our previous studies demonstrated that acetylated tubulin forms a complex with Na(+),K(+)-ATPase and thereby inhibits its enzyme activity in cultured COS and CAD cells. The enzyme activity was restored by treatment of cells with l-glutamate, which caused dissociation of the acetylated tubulin/Na(+),K(+)-ATPase complex. Addition of glucose, but not elimination of glutamate, led to re-formation of the complex and inhibition of the Na(+),K(+)-ATPase activity. The purpose of the present study was to elucidate the mechanism underlying this effect of glucose. We found that exposure of cells to high glucose concentrations induced: (a) microtubule formation; (b) activation of aldose reductase by the microtubules; (c) association of tubulin with membrane; (d) formation of the acetylated tubulin/Na(+),K(+)-ATPase complex and consequent inhibition of enzyme activity. Exposure of cells to sorbitol caused similar effects. Studies on erythrocytes from diabetic patients and on tissues containing insulin-insensitive glucose transporters gave similar results. Na(+),K(+)-ATPase activity was >50% lower and membrane-associated tubulin content was >200% higher in erythrocyte membranes from diabetic patients as compared with normal subjects. Immunoprecipitation analysis showed that acetylated tubulin was a constituent of a complex with Na(+),K(+)-ATPase in erythrocyte membranes from diabetic patients. Based on these findings, we propose a mechanism whereby glucose triggers a synergistic effect of tubulin and sorbitol, leading to activation of aldose reductase, microtubule formation, and consequent Na(+),K(+)-ATPase inhibition.  相似文献   

11.
The osmoregulatory action of 17beta-estradiol (E2) was examined in the euryhaline teleost Sparus auratas. In a first set of experiments, fish were injected once with vegetable oil containing E2 (1, 2 and 5 microg/g body weight), transferred 12h after injection from sea water (SW, 38 ppt salinity) to hypersaline water (HSW, 55 ppt) or to brackish water (BW, 5 ppt salinity) and sampled 12h later (i.e. 24 h post-injection). In a second experiment, fish were injected intraperitoneally with coconut oil alone or containing E2 (10 microg/g body weight) and sampled after 5 days. In the same experiment, after 5 days of treatment, fish of each group were transferred to HSW, BW and SW and sampled 4 days later (9 days post-implant). Gill Na+,K+ -ATPase activity, plasma E2 levels, plasma osmolality, and plasma levels of ions (sodium and calcium), glucose, lactate, protein, triglyceride, and hepatosomatic index were examined. Transfer from SW to HSW produced no significant effects on any parameters assessed. E2 treatment did not affect any parameter. Transfer from SW to BW resulted in a significant decrease in plasma osmolality and plasma sodium but did not affect gill Na+,K+ -ATPase activity. A single dose of E2 attenuated the decrease in these parameters after transfer from SW to BW, but was without effect on gill Na+,K+ -ATPase activity. An implant of E2 (10 microg/g body weight) for 5 days significantly increased plasma calcium, hepatosomatic index, plasma metabolic parameters, and gill Na+,K+ -ATPase activity. In coconut oil-implanted (sham) fish, transfer from SW to HSW or BW during 4 days significantly elevated gill Na+,K+ -ATPase. Gill Na+,K+ -ATPase activity remained unaltered after transfer of E2-treated fish to HSW or BW. However, in E2-treated fish transferred from SW to SW (9 days in SW after E2-implant), gill Na+,K+ -ATPase activity decreased with respect to HSW- or BW-transferred fish. Shams transferred to HSW showed increased levels of lactate, protein, and trygliceride in plasma, while those transferred to BW only displayed increased trygliceride levels. E2-treated fish transferred to HSW showed higher protein levels without any change in other plasmatic parameters, while those transferred to BW displayed elevated plasma glucose levels but decreased osmolality and protein levels. These results substantiate a chronic stimulatory action of E2 on gill Na+,K+ -ATPase activity in the euryhaline teleost Sparus auratas.  相似文献   

12.
The gilthead sea bream (Sparus auratus) is an euryhaline fish where prolactin (PRL) and growth hormone (GH) play a role in the adaptation to different environmental salinities. To find out the role of these pituitary hormones in osmoregulation and energy metabolism, fish were implanted with slow release implants of ovine GH (oGH, 5 microg g(-1) body mass) or ovine prolactin (oPRL, 5 microg g(-1) body mass), and sampled 7 days after the start of the treatment. GH increased branchial Na(+),K(+)-ATPase activity and decreased sodium levels in line with its predicted hypoosmoregulatory action. GH had metabolic effects as indicated by lowered plasma protein and lactate levels, while glucose, triglycerides and plasma cortisol levels were not affected. Also, GH changed liver glucose and lipid metabolism, stimulated branchial and renal glucose metabolism and glycolytic activity, and enhanced glycogenolysis in brain. PRL induced hypernatremia. Furthermore, this hormone decreased liver lipid oxidation potential, and increased glucose availability in kidney and brain. Both hormones have opposite osmoregulatory effects and different metabolic effects. These metabolic changes may support a role for both hormones in the control of energy metabolism in fish that could be related to the metabolic changes occurring during osmotic acclimation.  相似文献   

13.
The main objective of this study was to determine the effects of copper exposure on copper accumulated in branchial tissue, gill Na+/K+-ATPase activity and plasma Na+, Cl-, osmolality, protein, glucose and cortisol, in Oreochromis niloticus. Fish were experimentally exposed to 40 and 400 microg L(-1) of waterborne copper and sacrified after 0, 3, 7, 14 and 21 days. Copper accumulation and Na+/K+-ATPase activity were determined in branchial tissue, whereas osmolality, Na+, Cl-, protein, glucose and cortisol concentrations were measured in plasma samples. Gill copper accumulation increased linearly with exposure time and concentration, whereas gill Na+/K+-ATPase activity was maximally inhibited after 3 days of exposure and showed a significant negative correlation with copper tissue levels. Plasma Cl- values decreased with time of exposure but only at 400 microg L(-1) of copper. Plasma Na+, protein and osmolality decreased with exposure time at the highest copper concentration tested, whereas at 40 microg L(-1) of copper this effect was only observed after 21 days of exposure. Plasma glucose and cortisol levels increased in a dose and time dependent manner, while showing complex fluctuations during the intermediate exposure times. In conclusion, copper induces an early maximum inhibition of gill Na+/K+-ATPase activity in O. niloticus. The subsequent slow decrease in ion plasma levels was related to compensatory mechanisms involving a non-specific stress response that appeared overcome at long-term exposures.  相似文献   

14.
We examined the effect of leptin on renal function and renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase activities in the rat. Leptin was infused under general anaesthesia into the abdominal aorta proximally to the renal arteries. Leptin infused at doses of 1 and 10 microg/kg/min increased urine output by 40% and 140%, respectively. Urinary Na(+) excretion increased in rats receiving leptin at doses of 0.1, 1, and 10 microg/kg/min by 57.6%, 124.2% and 163.6%, respectively. Leptin had no effect on creatinine clearance, potassium excretion and phosphate excretion. Na(+),K(+)-ATPase activity in the renal medulla of rats treated with 1 and 10 microg/kg/min leptin was lower than in control animals by 25.5% and 33.2%, respectively. In contrast, cortical Na(+),K(+)-ATPase as well as either cortical or medullary ouabain-sensitive H(+),K(+)-ATPase activities did not differ between leptin-treated and control animals. The effect of leptin on Na(+),K(+)-ATPase activity was abolished by actin depolymerizing agents, cytochalazin D and latrunculin B, and by phosphatidylinositol 3-kinase (PI3K) inhibitors, wortmannin and LY294002. These results indicate that: 1). natriuretic effect of leptin is mediated, at least in part, by decrease in renal medullary Na(+),K(+)-ATPase activity, 2). inhibition of medullary Na(+),K(+)-ATPase by leptin is mediated by PI3K and requires integrity of actin cytoskeleton.  相似文献   

15.
Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited neurometabolic disorder biochemically characterized by tissue accumulation of guanidinoacetate (GAA) and depletion of creatine. Affected patients present epilepsy and mental retardation whose etiopathogeny is unclear. In a previous study we showed that instrastriatal administration of GAA caused a reduction of Na(+),K(+)-ATPase and creatine kinase (CK) activities, as well as an increase in TBARS (an index of lipid peroxidation). In the present study we investigated the in vitro and in vivo effects of GAA on glucose uptake from [U-(14)C] acetate (citric acid cycle activity) and on the activities of complexes II, II-III, III and IV of the respiratory chain in striatum of rats. Results showed that 50 and 100 microM GAA (in vitro studies) and GAA administration (in vivo studies) significantly inhibited complexes II and II-III, respectively, but did not alter complexes III and IV, as well as CO(2) production. We also studied the influence of taurine or vitamins E and C on the inhibitory effects caused by intrastriatal administration of GAA on complexes II and II-III, Na(+),K(+)-ATPase and CK activities, and on TBARS in rat striatum. Pre-treatment with taurine and vitamins E and C revealed that taurine prevents the effects of intrastriatal administration of GAA on the inhibition of complex II, complex II-III, and Na(+),K(+)-ATPase activities. Vitamins E and C prevent the effects of intrastriatal administration of GAA on the inhibition of CK and Na(+),K(+)-ATPase activities, and on the increase of TBARS. The data suggest that GAA in vivo and in vitro treatment disturbs important parameters of striatum energy metabolism and that oxidative damage may be mediating these effects. It is presumed that defects in striatum bioenergetics might be involved in the pathophysiology of striatum damage characteristic of patients with GAMT-deficiency.  相似文献   

16.
Al-Khalili L  Yu M  Chibalin AV 《FEBS letters》2003,536(1-3):198-202
We determined insulin-stimulated Na(+),K(+)-ATPase isoform-specific translocation to the skeletal muscle plasma membrane. When rat muscle plasma membrane fractions were isolated by discontinuous sucrose gradients, insulin-stimulated translocation of alpha(2)- but not alpha(1)-subunits was detected. However, using cell surface biotinylation techniques, an insulin-induced membrane translocation of both alpha(1) and alpha(2)-subunits in rat epitrochlearis muscle and cultured human skeletal muscle cells was noted. Na(+),K(+)-ATPase alpha-subunit translocation was abolished by the phosphatidylinositol (PI) 3-kinase inhibitor wortmannin, as well as by the protein kinase C inhibitor GF109203X. Thus, insulin mediates Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunit translocation to the skeletal muscle plasma membrane via a PI 3-kinase-dependent mechanism.  相似文献   

17.
18.
Recent discoveries indicate that microcystins affect enzymes, such as Na(+),K(+)-ATPase, involved in ion regulation of aquatic animals, through K(+)-dependent phosphatase inhibition. In vitro studies showed the inhibitory effect of Microcystis aeruginosa extracts on Na(+),K(+)-ATPase and K(+)-dependent phosphatase activities in gills of Chasmagnathus granulata (Decapoda, Grapsidae). Extracts of M. aeruginosa were prepared from lyophilized or cultures cells of the cyanobacterium. For lyophilized cells, IC(50) values were estimated as 0.46 microg/L (95% confidence interval [CI]=0.40-0.52 microg/L) and 1.31 microg/L (95% CI=1.14-1.51 microg/L) for Na(+),K(+)-ATPase and K(+)-dependent phosphatase, respectively. However, extracts prepared from cultured cells presented a much lower inhibitory potency against both enzymes. Gas chromatography revealed long-chain fatty acids in the lyophilized cell extracts, indicating that they are in part responsible for the enzyme inhibition. In vivo studies showed that the toxin inhibited Na(+),K(+)-ATPase activity in anterior gills, whereas an increased augmented activity of glutathione-S-transferase was observed in both kind of gills, indicating that the crab has increased its ability to conjugate the toxin. No significant differences in hemolymph sodium or chloride concentration were detected. This result is in agreement with the lack of effects of microcystin on Na(+),K(+)-ATPase activity of posterior (osmoregulating) gills.  相似文献   

19.
In this study, the correlation between Cl(-) influx in freshwater tilapia and various transporters or enzymes, the Cl(-)/HCO(3)(-) exchanger, Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase were examined. The inhibitors 2x10(-4) M ouabain (a Na(+),K(+)-ATPase inhibitor), 10(-5) M NEM (a V-type H(+)-ATPase inhibitor), 10(-2) M ACTZ (acetazolamide, a carbonic anhydrase inhibitor), and 6x10(-4) M DIDS (a Cl(-)/HCO(3)(-) exchanger inhibitor) caused 40%, 60%-80%, 40%-60%, and 40%-60% reduction in Cl(-) influx of freshwater tilapia, respectively. The inhibitor 2x10(-4) M ouabain also caused 50%-65% inhibition in gill Na(+),K(+)-ATPase activity. Western blot results showed that protein levels of gill Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase in tilapia acclimated in low-Cl(-) freshwater were significantly higher than those acclimated to high-Cl(-) freshwater. Based on these data, we conclude that Na(+),K(+)-ATPase, V-H(+)-ATPase, the Cl(-)/HCO(3)(-) exchanger, and carbonic anhydrase may be involved in the active Cl(-) uptake mechanism in gills of freshwater-adapted tilapia.  相似文献   

20.
The Na(+),K(+)-ATPase is the major active transport protein found in the plasma membranes of most epithelial cell types. The regulation of Na(+),K(+)-ATPase activity involves a variety of mechanisms, including regulated endocytosis and recycling. Our efforts to identify novel Na(+),K(+)-ATPase binding partners revealed a direct association between the Na(+),K(+)-ATPase and AS160, a Rab-GTPase-activating protein. In COS cells, coexpression of AS160 and Na(+),K(+)-ATPase led to the intracellular retention of the sodium pump. We find that AS160 interacts with the large cytoplasmic NP domain of the α-subunit of the Na(+),K(+)-ATPase. Inhibition of the activity of the adenosine monophosphate-stimulated protein kinase (AMPK) in Madin-Darby canine kidney cells through treatment with Compound C induces Na(+),K(+)-ATPase endocytosis. This effect of Compound C is prevented through the short hairpin RNA-mediated knockdown of AS160, demonstrating that AMPK and AS160 participate in a common pathway to modulate the cell surface expression of the Na(+),K(+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号