首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The DNA 5-methylcytosine content has been analyzed in the human melanoma cell line M21 at several time points after induction of differentiation by a variety of inducers. 5-Aza-2'-deoxycytidine reduces DNA methylation to about 50% of the control level and this demethylation occurs prior to the establishment of the differentiated phenotype. The DNA synthesis inhibitors cytosine arabinoside, aphidicolin, and hydroxyurea exert different effects on DNA methylation in these cells. Cytosine arabinoside induces an early DNA hypermethylation, which is however reversible and drops to the original level after 24 h. Hydroxyurea induces DNA hypermethylation after a lag period of more than 48 h and the DNA polymerase alpha inhibitor aphidicolin has no effect on the DNA methylation level. Treatment of cells with phorbol 12-myristate 13-acetate, another potent inducer of melanoma cell differentiation, does not result in a change of total DNA methylation over a period of 96 h. These results indicate that differentiation of human melanoma cells can be accompanied by variable changes of the DNA methylation pattern. These changes can be neither generally related to the differentiation process itself nor related to the effects of DNA synthesis inhibition on DNA methylation, but may more likely reflect a direct or indirect particular effect of the inducer on the DNA methylation process.  相似文献   

3.
DNA methylation is an epigenetic mark on the mammalian genome. There are numerous tissue-dependent and differentially methylated regions (T-DMRs) in the unique sequences distributed throughout the genome. To determine the epigenetic changes during adipocyte differentiation, we investigated the sequential changes in DNA methylation status of 3T3-L1 cells at the growing, confluent, postconfluent and mature adipocyte cell stages. Treatment of 3T3-L1 cells with 5-aza-2′-deoxycytidine inhibited differentiation in a stage-dependent manner, supporting the idea that formation of accurate DNA methylation profile, consisting of methylated and unmethylated T-DMRs, may be involved in differentiation. Analysis by methylation-sensitive quantitative real-time PCR of the 65 known T-DMRs which contain NotI sites detected 8 methylations that changed during differentiation, and the changes in the patterns of these methylations were diverse, confirming that the differentiation process involves epigenetic alteration at the T-DMRs. Intriguingly, the dynamics of the methylation change vary depending on the T-DMRs and differentiation stages. Restriction landmark genomic scanning detected 32 novel T-DMRs, demonstrating that differentiation of 3T3-L1 cells involves genome-wide epigenetic changes by temporal methylation/demethylation, in addition to maintenance of a static methylated/demethylated state, and both depend on differentiation stage.  相似文献   

4.
IS10 transposition is regulated by DNA adenine methylation   总被引:64,自引:0,他引:64  
We show that dam- mutants are a major class of E. coli mutants with increased IS10 activity. IS10 has two dam methylation sites, one within the transposase promoter and one within the inner terminus where transposase presumably binds. Absence of methylation results in increased activity of both promoter and terminus, and completely accounts for increased transposition in dam- strains. Transposition of Tn903 and Tn5 are also increased in dam- strains, probably for analogous reasons. Transposition is also increased when IS10 is hemimethylated. One hemimethylated species is much more active than the other and is estimated to be at least 1000 times more active than a fully methylated element. Evidence is presented that the promoter and inner terminus of IS10 are coordinately activated in a dam-dependent fashion, presumably because they are hemimethylated at the same time. Thus, in dam+ strains, IS10 will transpose preferentially when DNA is hemimethylated. We suggest specifically that IS10 transposition may preferentially occur immediately after passage of a chromosomal replication fork.  相似文献   

5.
Arányi T  Páldi A 《FEBS letters》2006,580(28-29):6521-6526
Studies on the DNA methylation changes in the mouse preimplantation embryo suggested a simple and attractive model explaining the process believed to be general in mammals. However, recent reports revealed marked differences between different species that abrogates the universal validity of the model. In order to find an explanation to the differences, we have analyzed the published mouse data and compared them to the observations available in other species. The emerging common theme is the high variability of the methylation at all scales of observation and all levels of organization. This variability is the likely consequence of a dynamic and active redistribution process of the cytosine methylation in the genome.  相似文献   

6.
The rate of Dam-mediated DNA adenine methylation in Escherichia coli   总被引:3,自引:0,他引:3  
J L Campbell  N Kleckner 《Gene》1988,74(1):189-190
  相似文献   

7.
8.
精子发生(spermatogenesis)是一个高度特化的细胞复杂分化过程,其中DNA二核苷酸CpG甲基化变化与基因转录激活、染色质改构以及遗传印记相关,并且该甲基化与基因表达之间的关系是非直接的,其可通过染色质结构的改变或DNA与蛋白质的相互作用来介导。本文着重介绍精子发生过程中DNA甲基化及其跨代遗传风险、DNA甲基转移酶的调控机制以及DNA甲基化与男性不育之间的关系等,为不育症的防治、精子表观遗传质量评价以及降低辅助生殖技术后代表观遗传疾病风险等提供基础资料。  相似文献   

9.
Early events during the establishment of the Gunnera/Nostoc symbiosis   总被引:1,自引:0,他引:1  
The symbiosis between Gunnera and Nostoc was reconstituted using G. chilensis Lam. and G. manicata Linden, respectively, and three different Nostoc strains. Six stages characterised by specific modifications in both the cyanobiont and the host were recognised during the infection process. Mucilage-secreting stem glands developed on the Gunnera stems independent of the presence of cyanobacteria (Stage I). Soon after addition of the Nostoc isolates to the plant apices, an abundant differentiation of motile hormogonia commenced. The cyanobacteria accumulated in the mucilage on the surface of the gland (Stage II), and the hormogonia then proceeded into the stem tissue through intercellular channels (Stage III). At the channel bases, Nostoc was detected between the cell walls of small, densely cytoplasmic Gunnera cells and also in elaborate folds of these (Stage IV). The Gunnera cell walls subsequently dissolved adjacent to the cyanobacteria and Nostoc entered the host cells (Stage V). Once the intracellular association was formed, a high proportion of the vegetative Nostoc cells differentiated into heterocysts (Stage VI). Nostoc changed from being rich in inclusions (particularly cyanophycin) while on the gland surface into a comparatively non-storing form during penetration and the early intracellular stages. Bacteria were numerous on the gland surface, fewer in the channels, and were never detected within the Gunnera cells, indicating the existence of specific recognition mechanisms discriminating between conceivable microsymbionts. Mechanisms behind mutual adaptations and interactions between the two symbionts are discussed.The technical assistance of Anette Axen and Gary Wife is gratefully acknowledged. Financial support was provided by the Swedish Natural Science Research Council and the Hierta-Retzius foundations.  相似文献   

10.
11.
12.
The phenotypic traits of 7 independently isolated dam mutants of Escherichia coli have been examined. The mutant strains differ from the wildtype in the following respects: (1) decreased DNA adenine methylase activity in vivo and in vitro; (2) a 14--85-fold increase in spontaneous mutability; (3) decreased survival after ultraviolet irradiation; (4) a 10--21-fold increase in spontaneous induction of lambda phage from lysogens; (5) a 3--17-fold increase in the level of recombination; and (6) inviability of double mutants containing dam- and recB- or recC-. Unmethylated fd phage chromosomes are able to replicate normally in dam- mutants. A mutant strain in which the dcm gene is deleted is viable, showing that the dcm gene product is dispensible for growth.  相似文献   

13.
DNA methylation reprogramming, the erasure of DNA methylation patterns shortly after fertilization and their reestablishment during subsequent early development, is essential for proper mammalian embryogenesis. In contrast, the importance of this process in the development of non-mammalian vertebrates such as fish is less clear. Indeed, whether or not any widespread changes in DNA methylation occur at all during cleavage and blastula stages of fish in a fashion similar to that shown in mammals has remained controversial. Here we have addressed this issue by applying the techniques of Southwestern immunoblotting and immunohistochemistry with an anti-5-methylcytosine antibody to the examination of DNA methylation in early zebrafish embryos. These techniques have recently been utilized to demonstrate that development-specific changes in genomic DNA methylation also occur in Drosophila melanogaster and Dictyostelium discoideum, both organisms for which DNA methylation was previously not thought to occur. Our data demonstrate that genome-wide changes in DNA methylation occur during early zebrafish development. Although zebrafish sperm DNA is strongly methylated, the zebrafish genome is not detectably methylated through cleavage and early blastula stages but is heavily remethylated in blastula and early gastrula stages.  相似文献   

14.
A mutant of Salmonella typhimurium LT2 deficient in methylation of the adenine residues in the sequence 5'-GATC-3' was isolated. The mutation (dam-1) was linked to the cysG locus, and the properties of the mutant were similar to those of Escherichia coli dam mutants. Reversion of the hisC3076 frameshift marker by 9-aminoacridine was substantially enhanced by the dam-1 mutation, implying a direct role for adenine methylation in the prevention of frameshift mutation induction.  相似文献   

15.
16.
17.
18.
We previously reported an X/Y imbalance with a relative excess of X- and a relative deficiency of Y-chromosomal DNA in three out of nine testicular tumors of germ cell origin. To study the implications of those changes the methylation status of DNA from seven of the tumors was explored by HpaII/MspI analysis. The 5' regions of the hypoxanthine phosphoribosyltransferase (HPRT) and the phosphoglycerate kinase (PGK) gene loci exhibited main patterns suggestive of active X chromosomes in the tumors. However, a minority of the HPRT loci of one teratocarcinoma with an increased dosage of the X chromosome, as well as one additional teratocarcinoma, revealed patterns analogous to inactive X chromosomes in females. Using probes from several chromosomes it was subsequently found that the teratocarcinoma tumors (3/3) were characterized by generalized hypermethylation. On the contrary, the seminomas showed variable hypomethylation (4/5) or virtually complete demethylation (1/5). The seminoma with the most extensive hypomethylation was disseminated (stage III), whereas the other seminomas were local (stage I). These findings suggest that DNA methylation may play a role in the developmental pathways leading to different histologic types of testicular tumors of germ cell origin. The HPRT results imply that the consequences of extra X chromosomes--a frequent finding in testicular tumors--may be modulated by mechanisms, such as DNA methylation, that control gene activity.  相似文献   

19.
The genome methylation is globally erased in early fetal germ cells, and it is gradually re‐established during gametogenesis. The expression of some imprinted genes is regulated by the methylation status of CpG islands, while the exact time of DNA methylation establishment near maternal imprinted genes during oocyte growth is not well known. Here, growing oocytes were divided into three groups based on follicle diameters including the S‐group (60–100 μm), M‐group (100–140 μm), and L‐group (140–180 μm). The fully grown germinal vesicle (GV)‐stage and metaphase II (M2)‐stage mature oocytes were also collected. These oocytes were used for single‐cell bisulfite sequencing to detect the methylation status of CpG islands near imprinted genes on chromosome 7. The results showed that the CpG islands near Ndn, Magel2, Mkrn3, Peg12, and Igf2 were completely unmethylated, but those of Peg3, Snrpn, and Kcnq1ot1 were hypermethylated in MII‐stage oocytes. The methylation of CpG islands near different maternal imprinted genes occurred asynchronously, being completed in later‐stage growing oocytes, fully grown GV oocytes, and mature MII‐stage oocytes, respectively. These results show that CpG islands near some maternally imprinted genes are not necessarily methylated, and that the establishment of methylation of other maternally imprinted genes is completed at different stages of oocyte growth, providing a novel understanding of the establishment of maternally imprinted genes in oocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号