首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several drugs and natural compounds are known to be highly neurotoxic, triggering epileptic convulsions or seizures, and causing headaches, agitations, as well as other neuronal symptoms. The neurotoxic effects of some of these compounds, including theophylline and ginkgotoxin, have been traced to their inhibitory activity against human pyridoxal kinase (hPL kinase), resulting in deficiency of the active cofactor form of vitamin B(6), pyridoxal 5'-phosphate (PLP). Pyridoxal (PL), an inactive form of vitamin B(6) is converted to PLP by PL kinase. PLP is the B(6) vitamer required as a cofactor for over 160 enzymatic activities essential in primary and secondary metabolism. We have performed structural and kinetic studies on hPL kinase with several potential inhibitors, including ginkgotoxin and theophylline. The structural studies show ginkgotoxin and theophylline bound at the substrate site, and are involved in similar protein interactions as the natural substrate, PL. Interestingly, the phosphorylated product of ginkgotoxin is also observed bound at the active site. This work provides insights into the molecular basis of hPL kinase inhibition and may provide a working hypothesis to quickly screen or identify neurotoxic drugs as potential hPL kinase inhibitors. Such adverse effects may be prevented by administration of an appropriate form of vitamin B(6), or provide clues of how to modify these drugs to help reduce their hPL kinase inhibitory effects.  相似文献   

2.
Ginkgo Biloba leaf extract has been widely used for the prevention and treatment of thrombosis and cardiovascular disease in both eastern and western countries, but the bioactive constituents and the underlying mechanism of anti-thrombosis have not been fully characterized. The purpose of this study was to investigate the inhibitory effects of major constituents in Ginkgo biloba on human thrombin, a key serine protease regulating the blood coagulation cascade and the processes of thrombosis. To this end, a fluorescence-based biochemical assay was used to assay the inhibitory effects of sixteen major constituents from Ginkgo biloba on human thrombin. Among all tested natural compounds, four biflavones (ginkgetin, isoginkgetin, bilobetin and amentoflavone), and five flavonoids (luteolin, apigenin, quercetin, kaempferol and isorhamnetin) were found with thrombin inhibition activity, with the IC50 values ranging from 8.05 μM to 82.08 μM. Inhibition kinetic analyses demonstrated that four biflavones were mixed inhibitors against thrombin-mediated Z-GGRAMC acetate hydrolysis, with the Ki values ranging from 4.12 μM to 11.01 μM. Molecular docking method showed that the four biflavones could occupy the active cavity with strong interactions of salt bridges and hydrogen bonds. In addition, mass spectrometry-based lysine labeling reactivity assay suggested that the biflavones could bind on human thrombin at exosite I rather than exosite II. All these findings suggested that the biflavones in Ginkgo biloba were naturally occurring inhibitors of human thrombin, and these compounds could be used as lead compounds for the development of novel thrombin inhibitors with improved efficacy and high safety profiles.  相似文献   

3.
4.
Pyridoxal kinase has been purified 50,000-fold from human erythrocytes. The purification procedure included dextran-induced aggregation of red blood cells, ammonium sulphate fractionation of the haemolysate, DEAE-cellulose chromatography, hydroxyapatite chromatography. Sephadex G-100 gel filtration and omega-aminooctyl agarose chromatography. The enzyme preparation migrated as a single protein and activity band on analytical gel electrophoresis. Determination of the Michaelis constants for pyridoxal, pyridoxine and pyridoxamine using a new assay gave comparable values of 33 microM, 16 microM and 6.2 microM respectively. Various amines were shown as competitive inhibitors of pyridoxal kinase with respect to ATP. The inhibition order was: N-dansyl-1,8-diaminooctane greater than 1,8-diaminooctane greater than 1,6-diaminohexane greater than 1,4-diaminobutane greater than gamma-aminobutyric acid, whereas octane, hexane and butane were not inhibitors. Results suggest that the amino groups on the above inhibitors are essential for competitive inhibition at saturating concentrations of pyridoxal. It was also observed that increasing the chain length of the hydrophobic backbone of these competitive inhibitors can facilitate its action.  相似文献   

5.
《Phytochemistry》1987,26(10):2869-2870
A new flavonoid glycoside was isolated from the leaves of Ginkgo biloba (Ginkgoaceae) and its structure elucidated as quercetin-3-O-α-(6‴-p-coumaroylglucosyl-β-1,4-rhamnoside).  相似文献   

6.
7.
Crystal structure of human pyridoxal kinase   总被引:1,自引:0,他引:1  
Pyridoxal kinase, a member of the ribokinase superfamily, catalyzes the ATP-dependent phosphorylation reaction of vitamin B6 and is an essential enzyme in the formation of pyridoxal-5'-phosphate, a key cofactor for over 100 enzymes. Pyridoxal kinase is thus regarded as a potential target for pharmacological agents. In this paper, we report the 2.8 angstroms crystal structure of human pyridoxal kinase (HPLK) expressed in Escherichia coli. The diffraction data revealed unexpected merohedral perfect twinning along the crystallographic c axis. Taking perfect twinning into account, the structure in dimeric form was well refined according to the CNS program. Structure comparison reveals that the key 12-residue peptide over the active site in HPLK is a beta-strand/loop/beta-strand flap, while the corresponding peptide in sheep brain enzyme adopts a loop conformation. Moreover, HPLK possesses a more hydrophobic ATP-binding pocket. This structure will facilitate further biochemical studies and structure-based design of drugs related to pyridoxal kinase.  相似文献   

8.
Water-soluble polysaccharides from Ginkgo biloba leaves.   总被引:5,自引:0,他引:5  
J Kraus 《Phytochemistry》1991,30(9):3017-3020
The water-soluble polysaccharides from dried Ginkgo biloba leaves were isolated after exhaustive extraction with organic solvents. The polysaccharide mixture could be separated into a neutral (GF1) and two acidic (GF2 and GF3) polysaccharide fractions by ion exchange chromatography. According to the Mr distribution GF1 and GF3 seemed to be homogenous, whereas GF2 could be further fractionated into two subfractions (GF2a and GF2b) by gel permeation chromatography. GF1 (Mr 23,000) showed the structural features of a branched arabinan. The main chain was composed of 1,5-linked arabinose residues and three in 12 arabinose molecules were branched via C-2 or C-3. GF2a (Mr 500,000) consisted mainly of 1,2,4-branched mannose (29%), 1,4-linked glucuronic (32%) and galacturonic (8%) acid as well as terminal rhamnose (25%). After removal of ca 70% of the terminal rhamnose the remaining polysaccharide showed a decrease in 1,2,4-branched mannose and an increase in 1,2-linked mannose indicating that at least half of the rhamnose residues were linked to mannose via C-4. GF3 (Mr 40,000) consisted of 1,4-linked galacturonic (30%) and glucuronic (16) acid, 1,3,6-branched galactose (15%), 1,2-linked (5%) and 1,2,4-branched (3.5%) rhamnose as well as 1,5-linked arabinose (11%). Rhamnose (5%) and arabinose (10%) were present as terminal groups. Mild acid hydrolysis selectively cleaved arabinose and the remaining polysaccharide showed an increased amount of 1,6-linked and terminal galactose and a decreased quantity of 1,3,6-branched galactose. These results indicated that the terminal as well as the 1,5-linked arabinose were mainly connected to galactose via C-3. The GF3 polysaccharide appeared to be a rhamnogalacturonan with arabinogalactan side chains.  相似文献   

9.
Two new fatty alcohols named as (7S,8R,11S)-nonacosanetriol (1) and (10R,12R,15S)-nonacosanetriol (2), along with eight known compounds including ginkgolic acid (3), hydroginkgolic acid (4), sciadopitysin (5), ginkgetin (6), isoginkgetin (7), ginkgolide A (8), ginkgolide B (9) and ginkgolide C (10) have been isolated from the petroleum ether extract of Ginkgo biloba sarcotesta. Their structures were elucidated by means of chemical and extensive spectroscopic analysis. The absolute stereochemistry of compounds 1 and 2 was elucidated on the spectroscopic analysis of the R- and S-MTPA esters. Compounds 1 and 2 exhibited slight activity of antithrombin and moderate activity of antiplatelet aggregation in vitro. This was the first report regarding the anticoagulative activities of biflavonoids in G. biloba, and isoginkgetin (7) showed significant antithrombin and antiplatelet aggregation activity.  相似文献   

10.
Cytotoxicity of alkylphenols from Ginkgo biloba.   总被引:1,自引:0,他引:1  
C P Siegers 《Phytomedicine》1999,6(4):281-283
  相似文献   

11.
Pyridoxal‐5′‐phosphate (vitamin B6) is an essential cofactor for many important enzymatic reactions such as transamination and decarboxylation. African trypanosomes are unable to synthesise vitamin B6de novo and rely on uptake of B6 vitamers such as pyridoxal and pyridoxamine from their hosts, which are subsequently phosphorylated by pyridoxal kinase (PdxK). A conditional null mutant of PdxK was generated in Trypanosoma brucei bloodstream forms showing that this enzyme is essential for growth of the parasite in vitro and for infectivity in mice. Activity of recombinant T. brucei PdxK was comparable to previously published work having a specific activity of 327 ± 13 mU mg−1 and a Kmapp with respect to pyridoxal of 29.6 ± 3.9 µM. A coupled assay was developed demonstrating that the enzyme has equivalent catalytic efficiency with pyridoxal, pyridoxamine and pyridoxine, and that ginkgotoxin is an effective pseudo substrate. A high resolution structure of PdxK in complex with ATP revealed important structural differences with the human enzyme. These findings suggest that pyridoxal kinase is an essential and druggable target that could lead to much needed alternative treatments for this devastating disease.  相似文献   

12.
The binding of pyridoxal analogues to the structural domains of pyridoxal kinase was studied by fluorescence spectroscopy and chromatographic techniques. Two fragments of 24 and 16 kDa, arising from limited proteolysis of the native enzyme, were separated by ion-exchange chromatography and used for binding studies with pyridoxal oxime. Fluorometric titrations yielded dissociation constants of 6 and 12.4 MicroM for pyridoxal oxime bound to the native enzyme and 24-kDa fragment, respectively. 4-(4-Azido-2-nitrophenyl)-pyridoxamine, a new photolabeling reagent, binds irreversibly to the kinase with concomitant loss of catalytic activity. The modified kinase (2.1 mol label/mol dimer) yields two fragments upon limited proteolysis with chymotrypsin. The two fragments were separated by reverse-phase HPLC and SDS/polyacrylamide gel electrophoresis. Radiolabeled ligand was detected only in the 24-kDa fragment. It is postulated that the pyridoxal binding site is located in the 24-kDa structural domain.  相似文献   

13.
银杏叶多糖研究进展   总被引:5,自引:0,他引:5  
银杏叶多糖具有多种重要的生物活性和功能,是目前药物开发和研究的热点之一。对银杏叶多糖提取、分离纯化、结构分析和生物活性的研究现状进行综述,并指出研究存在的问题和今后的研究方向。  相似文献   

14.
From the culture of an endophyte Chaetomium globosum found in Ginkgo biloba, twelve metabolites, including three diketopiperazines, two cytochalasins, two sterols, two simple phenolic compounds, one complex aromatic compound, a nonprotein amino acid and a linear triterpene were isolated. Of them, eight compounds are first reported for the genus Chaetomium. Gliotoxin (8) has good antifungal activity against plant pathogenic fungi.
Highlights? Twelve compounds were isolated from an endophyte C. globosum harboring inside G. biloba leaves. ? Eight compounds are new for the genus Chaetomium. ? Gliotoxin (8) possessed good antifungal activity against some phytopathogenic fungi.  相似文献   

15.
Shen G  Pang Y  Wu W  Miao Z  Qian H  Zhao L  Sun X  Tang K 《Journal of plant physiology》2005,162(10):1160-1168
A novel defensin gene was isolated from Ginkgo biloba. The full-length cDNA of G. biloba defensin (designated as Gbd) was 534bp. The cDNA contained a 240-bp open reading frame encoding an 80-amino acid protein of 5.68 kDa with a potential 30 aa signal peptide. The putative GbD mature protein showed striking similarity to other plant defensins, representing low molecular size antimicrobial polypeptides. Eight cysteine sites conserved in plant defensins were also found in GbD at similar positions. Three-dimensional structure modeling showed that GbD strongly resembled defensin from tobacco (NaD1) and consisted of an alpha-helix and a triple-strand antiparallel beta-sheet that were stabilized by four intramolecular disulfide bonds, implying GbD may have functions similar to NaD1. The genomic DNA gel blot indicated that Gbd belonged to a multigene family. Expression analysis revealed that Gbd was up-regulated by wounding and methyl jasmonate treatments, suggesting that Gbd is potentially involved in plant resistance or tolerance to pathogens during wounding.  相似文献   

16.
17.
【目的】从银杏中分离、筛选得到具有抑菌作用的内生放线菌,为放线菌在生物防治上的应用提供新的菌种资源。【方法】采用组织贴片培养法进行分离,生长对峙法进行筛选。【结果】从银杏的根、茎、叶中分离得到98株、50株、8株内生放线菌(共计156株),47株放线菌具有拮抗植物病原真菌活性。菌株KLBMP 5501抗菌活性最好且具有广谱性,基于形态特征、培养特征、生理生化特征和16S rRNA基因序列的相似性分析等多项分类特征表明,菌株KLBMP 5501是一株浅紫链霉菌(Streptomyces violascens)。【结论】筛选得到了具有应用潜力的高活性菌株,并进行了菌种鉴定。  相似文献   

18.
19.
20.
Chlorophyllase (Chlase) catalyzes the initial step of chlorophyll (Chl)-degradation, but the physiological significance of this reaction is still ambiguous. Common understanding of its role is that Chlase is involved in de-greening processes such as fruit ripening, leaf senescence, and flowering. But there is a possibility that Chlase is also involved in turnover and homeostasis of Chls. Among the de-greening processes, autumnal coloration is one of the most striking natural phenomena, but the involvement of Chlase during autumnal coloration is not clear. Previously, it was shown that Chlase activity and expression level of the Chlase gene were not increased during autumnal coloration in Ginkgo biloba, indicating that Chlase does not work specially in the de-greening processes in G. biloba. In this study, we characterized the recombinant Chlase and analyzed its subcellular localization to understand the role of the cloned Chlase of G. biloba (GbCLH). GbCLH exhibited its highest activity at pH 7.5, 40 degrees C. Kinetic analysis revealed that GbCLH hydrolyzes pheophytin (Pheo) a and Chl a more rapidly than Pheo b and Chl b. Transient expression analysis of 40 N-terminus amino acids of GbCLH fused with GFP (green fluorescent protein) and subcellular fractionation showed that GbCLH localizes within chloroplasts. Together with our previous results, property of GbCLH and its location within the chloroplasts suggest that GbCLH plays a role in the turnover and homeostasis of Chls in green leaves of G. biloba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号