首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Protein folding and misfolding: mechanism and principles   总被引:1,自引:0,他引:1  
Two fundamentally different views of how proteins fold are now being debated. Do proteins fold through multiple unpredictable routes directed only by the energetically downhill nature of the folding landscape or do they fold through specific intermediates in a defined pathway that systematically puts predetermined pieces of the target native protein into place? It has now become possible to determine the structure of protein folding intermediates, evaluate their equilibrium and kinetic parameters, and establish their pathway relationships. Results obtained for many proteins have serendipitously revealed a new dimension of protein structure. Cooperative structural units of the native protein, called foldons, unfold and refold repeatedly even under native conditions. Much evidence obtained by hydrogen exchange and other methods now indicates that cooperative foldon units and not individual amino acids account for the unit steps in protein folding pathways. The formation of foldons and their ordered pathway assembly systematically puts native-like foldon building blocks into place, guided by a sequential stabilization mechanism in which prior native-like structure templates the formation of incoming foldons with complementary structure. Thus the same propensities and interactions that specify the final native state, encoded in the amino-acid sequence of every protein, determine the pathway for getting there. Experimental observations that have been interpreted differently, in terms of multiple independent pathways, appear to be due to chance misfolding errors that cause different population fractions to block at different pathway points, populate different pathway intermediates, and fold at different rates. This paper summarizes the experimental basis for these three determining principles and their consequences. Cooperative native-like foldon units and the sequential stabilization process together generate predetermined stepwise pathways. Optional misfolding errors are responsible for 3-state and heterogeneous kinetic folding.  相似文献   

2.
It has been suggested that proteins have substructures, called foldons, which can cooperatively fold into the native structure. However, several prior investigations define foldons in various ways, citing different foldon characteristics, thereby making the concept of a foldon ambiguous. In this study, we perform a Gō model simulation and analyze the characteristics of substructures that cooperatively fold into the native‐like structure. Although some results do not agree well with the experimental evidence due to the simplicity of our coarse‐grained model, our results strongly suggest that cooperatively folding units sometimes organize a partially overlapped and hierarchical structure. This view makes us easy to interpret some different proposal about the foldon as a difference of the hierarchical structure. On the basis of this finding, we present a new method to assign foldons and their hierarchy, using structural and sequence information. The results show that the foldons assigned by our method correspond to the intermediate structures identified by some experimental techniques. The new method makes it easy to predict whether a protein folds sequentially into the native structure or whether some foldons fold into the native structure in parallel. Proteins 2015; 83:1900–1913. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
There is a fundamental conflict between two different views of how proteins fold. Kinetic experiments and theoretical calculations are often interpreted in terms of different population fractions folding through different intermediates in independent unrelated pathways (IUP model). However, detailed structural information indicates that all of the protein population folds through a sequence of intermediates predetermined by the foldon substructure of the target protein and a sequential stabilization principle. These contrary views can be resolved by a predetermined pathway--optional error (PPOE) hypothesis. The hypothesis is that any pathway intermediate can incorporate a chance misfolding error that blocks folding and must be reversed for productive folding to continue. Different fractions of the protein population will then block at different steps, populate different intermediates, and fold at different rates, giving the appearance of multiple unrelated pathways. A test of the hypothesis matches the two models against extensive kinetic folding results for hen lysozyme which have been widely cited in support of independent parallel pathways. The PPOE model succeeds with fewer fitting constants. The fitted PPOE reaction scheme leads to known folding behavior, whereas the IUP properties are contradicted by experiment. The appearance of a conflict with multipath theoretical models seems to be due to their different focus, namely on multitrack microscopic behavior versus cooperative macroscopic behavior. The integration of three well-documented principles in the PPOE model (cooperative foldons, sequential stabilization, optional errors) provides a unifying explanation for how proteins fold and why they fold in that way.  相似文献   

4.

Background  

It has long been known that small regions of proteins tend to fold independently and are then stabilized by interactions between these distinct subunits or modules. Such units, also known as autonomous folding units (AFUs) or"foldons" play a key role in protein folding. A knowledge of such early folding units has diverse applications in protein engineering as well as in developing an understanding of the protein folding process. Such AFUs can also be used as model systems in order to study the structural organization of proteins.  相似文献   

5.
Although progress has been made to determine the native fold of a polypeptide from its primary structure, the diversity of pathways that connect the unfolded and folded states has not been adequately explored. Theoretical and computational studies predict that proteins fold through parallel pathways on funneled energy landscapes, although experimental detection of pathway diversity has been challenging. Here, we exploit the high translational symmetry and the direct length variation afforded by linear repeat proteins to directly detect folding through parallel pathways. By comparing folding rates of consensus ankyrin repeat proteins (CARPs), we find a clear increase in folding rates with increasing size and repeat number, although the size of the transition states (estimated from denaturant sensitivity) remains unchanged. The increase in folding rate with chain length, as opposed to a decrease expected from typical models for globular proteins, is a clear demonstration of parallel pathways. This conclusion is not dependent on extensive curve-fitting or structural perturbation of protein structure. By globally fitting a simple parallel-Ising pathway model, we have directly measured nucleation and propagation rates in protein folding, and have quantified the fluxes along each path, providing a detailed energy landscape for folding. This finding of parallel pathways differs from results from kinetic studies of repeat-proteins composed of sequence-variable repeats, where modest repeat-to-repeat energy variation coalesces folding into a single, dominant channel. Thus, for globular proteins, which have much higher variation in local structure and topology, parallel pathways are expected to be the exception rather than the rule.  相似文献   

6.
Previous results indicate that the folding pathways of cytochrome c and other proteins progressively build the target native protein in a predetermined stepwise manner by the sequential formation and association of native-like foldon units. The present work used native state hydrogen exchange methods to investigate a structural anomaly in cytochrome c results that suggested the concerted folding of two segments that have little structural relationship in the native protein. The results show that the two segments, an 18-residue omega loop and a 10-residue helix, are able to unfold and refold independently, which allows a branch point in the folding pathway. The pathway that emerges assembles native-like foldon units in a linear sequential manner when prior native-like structure can template a single subsequent foldon, and optional pathway branching is seen when prior structure is able to support the folding of two different foldons.  相似文献   

7.
Making use of an ab-initio folding simulator, we generate in vitro pathways leading to the native fold in moderate size single- domain proteins. The assessment of pathway diversity is not biased by any a priori information on the native fold. We focus on two study cases, hyperthermophile variant of protein G domain (1gb4) and ubiquitin (1ubi), with the same topology but different context dependence in their native folds. We demonstrate that a quenching of structural fluctuations is achieved once the proteins find a stationary plateau maximizing the number of highly protected hydrogen bonds. This enables us to identify the folding nucleus and show that folding does not become expeditious until a concerted event takes place generating a topology able to prevent water attack on a maximal number of hydrogen bonds. This result is consistent with the standard nucleation mechanism postulated for two-state folders. Pathway diversity is correlated with the extent of conflict between local structural propensity and large-scale context, rather than with contact order: In highly context-dependent proteins, the success of folding cannot rely on a single fortuitous event in which local propensity is overruled by large-scale effects. We predict mutational Pi values on individual pathways, compute ensemble averages and predict extent of surface burial and percentage of hydrogen bonding on each component of the transition state ensemble, thus deconvoluting individual folding-route contributions to the averaged two-state kinetic picture. Our predicted kinetic isotopic effects find experimental support and lead to further probes. Finally, the molecular redesign potentiality of the method, aimed at increasing folding expediency, is explored.  相似文献   

8.
Using motion planning to study protein folding pathways.   总被引:2,自引:0,他引:2  
We present a framework for studying protein folding pathways and potential landscapes which is based on techniques recently developed in the robotics motion planning community. Our focus in this work is to study the protein folding mechanism assuming we know the native fold. That is, instead of performing fold prediction, we aim to study issues related to the folding process, such as the formation of secondary and tertiary structure, and the dependence of the folding pathway on the initial denatured conformation. Our work uses probabilistic roadmap (PRM) motion planning techniques which have proven successful for problems involving high-dimensional configuration spaces. A strength of these methods is their efficiency in rapidly covering the planning space without becoming trapped in local minima. We have applied our PRM technique to several small proteins (~60 residues) and validated the pathways computed by comparing the secondary structure formation order on our paths to known hydrogen exchange experimental results. An advantage of the PRM framework over other simulation methods is that it enables one to easily and efficiently compute folding pathways from any denatured starting state to the (known) native fold. This aspect makes our approach ideal for studying global properties of the protein's potential landscape, most of which are difficult to simulate and study with other methods. For example, in the proteins we study, the folding pathways starting from different denatured states sometimes share common portions when they are close to the native fold, and moreover, the formation order of the secondary structure appears largely independent of the starting denatured conformation. Another feature of our technique is that the distribution of the sampled conformations is correlated with the formation of secondary structure and, in particular, appears to differentiate situations in which secondary structure clearly forms first and those in which the tertiary structure is obtained more directly. Overall, our results applying PRM techniques are very encouraging and indicate the promise of our approach for studying proteins for which experimental results are not available.  相似文献   

9.

Background

Mapping protein primary sequences to their three dimensional folds referred to as the 'second genetic code' remains an unsolved scientific problem. A crucial part of the problem concerns the geometrical specificity in side chain association leading to densely packed protein cores, a hallmark of correctly folded native structures. Thus, any model of packing within proteins should constitute an indispensable component of protein folding and design.

Results

In this study an attempt has been made to find, characterize and classify recurring patterns in the packing of side chain atoms within a protein which sustains its native fold. The interaction of side chain atoms within the protein core has been represented as a contact network based on the surface complementarity and overlap between associating side chain surfaces. Some network topologies definitely appear to be preferred and they have been termed 'packing motifs', analogous to super secondary structures in proteins. Study of the distribution of these motifs reveals the ubiquitous presence of typical smaller graphs, which appear to get linked or coalesce to give larger graphs, reminiscent of the nucleation-condensation model in protein folding. One such frequently occurring motif, also envisaged as the unit of clustering, the three residue clique was invariably found in regions of dense packing. Finally, topological measures based on surface contact networks appeared to be effective in discriminating sequences native to a specific fold amongst a set of decoys.

Conclusions

Out of innumerable topological possibilities, only a finite number of specific packing motifs are actually realized in proteins. This small number of motifs could serve as a basis set in the construction of larger networks. Of these, the triplet clique exhibits distinct preference both in terms of composition and geometry.  相似文献   

10.
Abstract

Making use of an ab-initio folding simulator, we generate in vitro pathways leading to the native fold in moderate size single-domain proteins. The assessment of pathway diversity is not biased by any a-priori information on the native fold. We focus on two study cases, hyperthermophile variant of protein G domain (1gb4) and ubiquitin (1ubi), with the same topology but different context dependence in their native folds. We demonstrate that a quenching of structural fluctuations is achieved once the proteins find a stationary plateau maximizing the number of highly protected hydrogen bonds. This enables us to identify the folding nucleus and show that folding does not become expeditious until a concerted event takes place generating a topology able to prevent water attack on a maximal number of hydrogen bonds. This result is consistent with the standard nucleation mechanism postulated for two-state folders. Pathway diversity is correlated with the extent of conflict between local structural propensity and large-scale context, rather than with contact order: In highly context-dependent proteins, the success of folding cannot rely on a single fortuitous event in which local propensity is overruled by large-scale effects. We predict mutational Φ values on individual pathways, compute ensemble averages and predict extent of surface burial and percentage of hydrogen bonding on each component of the transition state ensemble, thus deconvoluting individual folding-route contributions to the averaged two-state kinetic picture. Our predicted kinetic isotopic effects find experimental support and lead to further probes. Finally, the molecular redesign potentiality of the method, aimed at increasing folding expediency, is explored.  相似文献   

11.
Capriotti E  Compiani M 《Proteins》2006,64(1):198-209
In this article we use mutation studies as a benchmark for a minimal model of the folding process of helical proteins. The model ascribes a pivotal role to the collisional dynamics of a few crucial residues (foldons) and predicts the folding rates by exploiting information drawn from the protein sequence. We show that our model rationalizes the effects of point mutations on the kinetics of folding. The folding times of two proteins and their mutants are predicted. Stability and location of foldons have a critical role as the determinants of protein folding. This allows us to elucidate two main mechanisms for the kinetic effects of mutations. First, it turns out that the mutations eliciting the most notable effects alter protein stability through stabilization or destabilization of the foldons. Secondly, the folding rate is affected via a modification of the foldon topology by those mutations that lead to the birth or death of foldons. The few mispredicted folding rates of some mutants hint at the limits of the current version of the folding model proposed in the present article. The performance of our folding model declines in case the mutated residues are subject to strong long-range forces. That foldons are the critical targets of mutation studies has notable implications for design strategies and is of particular interest to address the issue of the kinetic regulation of single proteins in the general context of the overall dynamics of the interactome.  相似文献   

12.
Previous work used hydrogen exchange (HX) experiments in kinetic and equilibrium modes to study the reversible unfolding and refolding of cytochrome c (Cyt c) under native conditions. Accumulated results now show that Cyt c is composed of five individually cooperative folding units, called foldons, which unfold and refold as concerted units in a stepwise pathway sequence. The first three steps of the folding pathway are linear and sequential. The ordering of the last two steps has been unclear because the fast HX of the amino acid residues in these foldons has made measurement difficult. New HX experiments done under slower exchange conditions show that the final two foldons do not unfold and refold in an obligatory sequence. They unfold separately and neither unfolding obligately contains the other, as indicated by their similar unfolding surface exposure and the specific effects of destabilizing and stabilizing mutations, pH change, and oxidation state. These results taken together support a sequential stabilization mechanism in which folding occurs in the native context with prior native-like structure serving to template the stepwise formation of subsequent native-like foldon units. Where the native structure of Cyt c requires sequential folding, in the first three steps, this is found. Where structural determination is ambiguous, in the final two steps, alternative parallel folding is found.  相似文献   

13.
Theoretical and experimental studies of protein folding have suggested that the topology of the native state may be the most important factor determining the folding pathway of a protein, independent of its specific amino acid sequence. To test this concept, many experimental studies have been carried out with the aim of comparing the folding pathways of proteins that possess similar tertiary structures, but divergent sequences. Many of these studies focus on quantitative comparisons of folding transition state structures, as determined by Phi(f) value analysis of folding kinetic data. In some of these studies, folding transition state structures are found to be highly conserved, whereas in others they are not. We conclude that folds displaying more conserved transition state structures may have the most restricted number of possible folding pathways and that folds displaying low transition state structural conservation possess many potential pathways for reaching the native state.  相似文献   

14.
Proteins consisting of repeating amino acid motifs are abundant in all kingdoms of life, especially in higher eukaryotes. Repeat-containing proteins self-organize into elongated non-globular structures. Do the same general underlying principles that dictate the folding of globular domains apply also to these extended topologies? Using a simplified structure-based model capturing a perfectly funneled energy landscape, we surveyed the predicted mechanism of folding for ankyrin repeat containing proteins. The ankyrin family is one of the most extensively studied classes of non-globular folds. The model based only on native contacts reproduces most of the experimental observations on the folding of these proteins, including a folding mechanism that is reminiscent of a nucleation propagation growth. The confluence of simulation and experimental results suggests that the folding of non-globular proteins is accurately described by a funneled energy landscape, in which topology plays a determinant role in the folding mechanism.  相似文献   

15.
Fernández A 《Proteins》2002,47(4):447-457
A method is presented to identify hot mutational spots and predict the extent of surface burial at the transition state relative to the native fold in two-state folding proteins. The method is based on ab initio simulations of folding histories in which transitions between coarsely defined conformations and pairwise interactions are dependent on the solvent environments created by the chain. The highly conserved mammalian ubiquitin is adopted as a study case to make predictions. The evolution in time of the chain topology suggests a nucleation process with a critical point signaled by a sudden quenching of structural fluctuations. The occurrence of this nucleus is shown to be concurrent with a sudden escalation in the number of three-body correlations whereby hydrophobic units approach residue pairs engaged in amide-carbonyl hydrogen bonding. These correlations determine a pattern designed to structure the surrounding solvent, protecting intramolecular hydrogen bonds from water attack. Such correlations are shown to be required to stabilize the nucleus, with kinetic consequences for the folding process. Those nuclear residues that adopt the dual role of protecting and being protected while engaged in hydrogen bonds are predicted to be the hottest mutational spots. Some such residues are shown not to retain the same protecting role in the native fold. This kinetic treatment of folding nucleation is independently validated vis-a-vis a Phi-value analysis on chymotrypsin inhibitor 2, a protein for which extensive mutational data exists.  相似文献   

16.
Experiments point to appreciable variations in folding cooperativity among natural proteins with approximately 40 residues, indicating that the behaviors of these proteins are valuable for delineating the contributing factors to cooperative folding. To explore the role of native topology in a protein's propensity to fold cooperatively and how native topology might constrain the degree of cooperativity achievable by a given set of physical interactions, we compared folding/unfolding kinetics simulated using three classes of native-centric Cα chain models with different interaction schemes. The approach was applied to two homologous 45-residue fragments from the peripheral subunit-binding domain family and a 39-residue fragment of the N-terminal domain of ribosomal protein L9. Free-energy profiles as functions of native contact number were computed to assess the heights of thermodynamic barriers to folding. In addition, chevron plots of folding/unfolding rates were constructed as functions of native stability to facilitate comparison with available experimental data. Although common Gō-like models with pairwise Lennard-Jones-type interactions generally fold less cooperatively than real proteins, the rank ordering of cooperativity predicted by these models is consistent with experiment for the proteins investigated, showing increasing folding cooperativity with increasing nonlocality of a protein's native contacts. Models that account for water-expulsion (desolvation) barriers and models with many-body (nonadditive) interactions generally entail higher degrees of folding cooperativity indicated by more linear model chevron plots, but the rank ordering of cooperativity remains unchanged. A robust, experimentally valid rank ordering of model folding cooperativity independent of the multiple native-centric interaction schemes tested here argues that native topology places significant constraints on how cooperatively a protein can fold.  相似文献   

17.
Small autonomously folding proteins are of interest as model systems to study protein folding, as the same molecule can be used for both experimental and computational approaches. The question remains as to how well these minimized peptide model systems represent larger native proteins. For example, is the core of a minimized protein tolerant to mutation like larger proteins are? Also, do minimized proteins use special strategies for specifying and stabilizing their folded structure? Here we examine these questions in the 35‐residue autonomously folding villin headpiece subdomain (VHP subdomain). Specifically, we focus on a cluster of three conserved phenylalanine (F) residues F47, F51, and F58, that form most of the hydrophobic core. These three residues are oriented such that they may provide stabilizing aromatic–aromatic interactions that could be critical for specifying the fold. Circular dichroism and 1D‐NMR spectroscopy show that point mutations that individually replace any of these three residues with leucine were destabilized, but retained the native VHP subdomain fold. In pair‐wise replacements, the double mutant that retains F58 can adopt the native fold, while the two double mutants that lack F58 cannot. The folding of the double mutant that retains F58 demonstrates that aromatic–aromatic interactions within the aromatic cluster are not essential for specifying the VHP subdomain fold. The ability of the VHP subdomain to tolerate mutations within its hydrophobic core indicates that the information specifying the three dimensional structure is distributed throughout the sequence, as observed in larger proteins. Thus, the VHP subdomain is a legitimate model for larger, native proteins.  相似文献   

18.
Sec secretory proteins are distinguished from cytoplasmic ones by N-terminal signal peptides with multiple roles during post-translational translocation. They contribute to preprotein targeting to the translocase by slowing down folding, binding receptors and triggering secretion. While signal peptides get cleaved after translocation, mature domains traffic further and/or fold into functional states. How signal peptides delay folding temporarily, to keep mature domains translocation-competent, remains unclear. We previously reported that the foldon landscape of the periplasmic prolyl-peptidyl isomerase is altered by its signal peptide and mature domain features. Here, we reveal that the dynamics of signal peptides and mature domains crosstalk. This involves the signal peptide’s hydrophobic helical core, the short unstructured connector to the mature domain and the flexible rheostat at the mature domain N-terminus. Through this cis mechanism the signal peptide delays the formation of early initial foldons thus altering their hierarchy and delaying mature domain folding. We propose that sequence elements outside a protein’s native core exploit their structural dynamics to influence the folding landscape.  相似文献   

19.
Behrouzi R  Roh JH  Kilburn D  Briber RM  Woodson SA 《Cell》2012,149(2):348-357
Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have?a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming?a unique, stable fold.  相似文献   

20.
The folding mechanisms of proteins with multi‐state transitions, the role of the intermediate states, and the precise mechanism how each transition occurs are significant on‐going research issues. In this study, we investigate ferredoxin‐like fold proteins which have a simple topology and multi‐state transitions. We analyze the folding processes by means of a coarse‐grained Gō model. We are able to reproduce the differences in the folding mechanisms between U1A, which has a high‐free‐energy intermediate state, and ADA2h and S6, which fold into the native structure through two‐state transitions. The folding pathways of U1A, ADA2h, S6, and the S6 circular permutant, S6_p54‐55, are reproduced and compared with experimental observations. We show that the ferredoxin‐like fold contains two common regions consisting folding cores as predicted in other studies and that U1A produces an intermediate state due to the distinct cooperative folding of each core. However, because one of the cores of S6 loses its cooperativity and the two cores of ADA2h are tightly coupled, these proteins fold into the native structure through a two‐state mechanism. Proteins 2014; 82:954–965. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号