首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of antibiotics have been reported to disturb the decoding process in prokaryotic translation and to inhibit the function of various natural ribozymes. We investigated the effect of several antibiotics on in vitro splicing of a eukaryotic nuclear pre-mRNA (beta-globin). Of the eight antibiotics studied, erythromycin, Cl-tetracycline and streptomycin were identified as splicing inhibitors in nuclear HeLa cell extract. The K(i) values were 160, 180 and 230 microm, respectively. Cl-tetracycline-mediated and streptomycin-mediated splicing inhibition were in the molar inhibition range for hammerhead and human hepatitis delta virus ribozyme self-cleavage (tetracycline), of group-I intron self-splicing (streptomycin) and inhibition of RNase P cleavage by some aminoglycosides. Cl-tetracycline and the aminocyclitol glycoside streptomycin were found to have an indirect effect on splicing by unspecific binding to the pre-mRNA, suggesting that the inhibition is the result of disturbance of the correct folding of the pre-mRNA into the splicing-compatible tertiary structure by the charged groups of these antibiotics. The macrolide, erythromycin, the strongest inhibitor, had only a slight effect on formation of the presplicing complexes A and B, but almost completely inhibited formation of the splicing-active C complex by binding to nuclear extract component(s). This results in direct inhibition of the second step of pre-mRNA splicing. To our knowledge, this is the first report on specific inhibition of nuclear splicing by an antibiotic. The functional groups involved in the interaction of erythromycin with snRNAs and/or splicing factors require further investigation.  相似文献   

2.
3.
4.
5.
6.
Interactions between introns via exon definition in plant pre-mRNA splicing   总被引:2,自引:1,他引:2  
The barley gene Mlo encodes a prototype of a novel class of plant proteins. In mlo mutants, absence of the 60 kDa wild-type Mlo protein results in broad-spectrum resistance to the powdery mildew fungus, Erysiphe graminis f. sp. hordei . To directly assess its function, Mlo was transiently expressed with a marker gene encoding a modified green fluorescent protein (GFP) in leaf epidermal cells of mlo resistant barley lines. Fungal inoculation of epidermal cells transfected with wild-type Mlo led to haustorium formation and abundant sporulation. Therefore, expression of the wild-type Mlo gene, in mlo resistant genotypes, is both necessary and sufficient to restore susceptibility to fungal attack. Complementation of mlo resistance alleles was restricted to single host cells, indicating a cell-autonomous function for the wild-type Mlo protein. We discuss our findings with respect to source–sink relationships of plants and biotrophic fungi and the potentially wide-ranging use of the transient complementation assay to analyse host compatibility and defence in response to powdery mildew attack.  相似文献   

7.
An in vitro splicing system was constructed using portions of chicken delta-crystallin pre-mRNA synthesized in vitro and a HeLa nuclear extract. Analysis of the reaction products revealed that about 25% of the pre-mRNA was precisely spliced at 30 degrees C in 2 h under the standard conditions. The other major products of the reaction detected were a 5'-exon fragment and three RNA species showing unusual electrophoretic mobilities on polyacrylamide gels. Structural analyses showed that these three RNAs contain a branch (lariat) structure as seen in the in vitro splicing reactions of human beta-globin, adenovirus, and yeast pre-mRNAs. In addition, methylation at the N-7 position of the blocking guanosine of the 5'-terminal cap structure of pre-mRNA has been suggested to play an important role in the splicing reaction.  相似文献   

8.
B G Yue  G Akusj?rvi 《FEBS letters》1999,451(1):10-14
Splicing enhancers have previously been shown to promote processing of introns containing weak splicing signals. Here, we extend these studies by showing that also 'strong' constitutively active introns are absolutely dependent on a downstream splicing enhancer for activity in vitro. SR protein binding to exonic enhancer elements or U1 snRNP binding to a downstream 5' splice site serve redundant functions as activators of splicing. We further show that a 5' splice site is most effective as an enhancer of splicing. Thus, a 5' splice site is functional in S100 extracts, under conditions where a SR enhancer is nonfunctional. Also, splice site pairing occurs efficiently in the absence of exonic SR enhancers, emphasizing the significance of a downstream 5' splice site as the enhancer element in vertebrate splicing.  相似文献   

9.
10.
By alternative splicing, exons 4, 5, and 6 of the human leukocyte common antigen (LCA) gene are included in B-cell mRNA but excluded from thymocyte mRNA. A mini-LCA gene that contains only LCA exons 2, 6, and 8 faithfully reproduces this tissue-specific alternative splicing in mouse B and thymocyte cell lines. Elimination of almost all of the intron sequences associated with exon 6 had no effect on the alternative splicing, while linker-scanning analysis showed that a significant length of the exon 6 sequence is essential for alternative splicing.  相似文献   

11.
12.
13.
14.
15.
16.
Neurofibrillary tangles containing filaments of the microtubule-associated protein tau are found in a variety of neurodegenerative diseases. Mutations in the tau gene itself cause frontotemporal dementia with parkinsonism, demonstrating the critical role of tau in pathogenesis. Many of these mutations in tau are silent, are found at the 5'-splice site of exon 10, and lead to increased inclusion of exon 10. These silent mutations are predicted to destabilize a stem loop structure at the exon 10 5'-splice site; however, the existence of this stem loop under physiological conditions and its role in splice regulation are controversial. Here we show that base changes that stabilize this stem loop in vitro substantially decrease exon 10 inclusion in a wild type tau minigene and rescue the increase in exon 10 splicing caused by a dementia-causing point mutation. Moreover, we probed the intracellular structure of the tau stem loop with antisense RNA and demonstrate that the stability of the stem loop dictates antisense effectiveness. Together these results validate the stem loop as a bona fide structure regulating tau exon 10 splicing.  相似文献   

17.
Mitochondrial ATP synthase gamma-subunit (F(1)gamma) pre-mRNA undergoes alternative splicing in a tissue- or cell type-specific manner. Exon 9 of F(1)gamma pre-mRNA is specifically excluded in heart and skeletal muscle tissues and in acid-stimulated human fibrosarcoma HT1080 cells, rhabdomyosarcoma KYM-1 cells, and mouse myoblast C2C12 cells. Recently, we found a purine-rich exonic splicing enhancer (ESE) element on exon 9 via transgenic mice bearing F(1)gamma mutant minigenes and demonstrated that this ESE functions ubiquitously with exception of muscle tissue (Ichida, M., Hakamata, Y., Hayakawa, M., Ueno E., Ikeda, U., Shimada, K., Hamamoto, T., Kagawa, Y., Endo, H. (2000) J. Biol. Chem. 275, 15992-16001). Here, we identified an exonic negative regulatory element responsible for muscle-specific exclusion of exon 9 using both in vitro and in vivo splicing systems. A supplementation assay with nuclear extracts from HeLa cells and acid-stimulated HT1080 cells was performed for an in vitro reaction of muscle-specific alternative splicing of F(1)gamma minigene and revealed that the splicing reaction between exons 8 and 9 was the key step for regulation of muscle-specific exon exclusion. Polypyrimidine tract in intron 8 requires ESE on exon 9 for constitutive splice site selection. Mutation analyses on the F(1)gammaEx8-9 minigene using a supplementation assay demonstrated that the muscle-specific negative regulatory element is positioned in the middle region of exon 9, immediately downstream from ESE. Detailed mutation analyses identified seven nucleotides (5'-AGUUCCA-3') as a negative regulatory element responsible for muscle-specific exon exclusion. This element was shown to cause exon skipping in in vivo splicing systems using acid-stimulated HT1080 cells after transient transfection of several mutant F(1)gammaEx8-9-10 minigenes. These results demonstrated that the 5'-AGUUCCA-3' immediately downstream from ESE is a muscle-specific exonic splicing silencer (MS-ESS) responsible for exclusion of exon 9 in vivo and in vitro.  相似文献   

18.
19.
We have shown previously that truncation of the human beta-globin pre-mRNA in the second exon, 14 nucleotides downstream from the 3' splice site, leads to inhibition of splicing but not cleavage at the 5' splice site. We now show that several nonglobin sequences substituted at this site can restore splicing and that the efficiency of splicing depends on the length of the second (downstream) exon and not a specific sequence. Deletions in the first exon have no effect on the efficiency of in vitro splicing. Surprisingly, an intron fragment from the 5' region of the human or rabbit beta-globin intron 2, when placed 14 nucleotides downstream from the 3' splice site, inhibited all the steps in splicing beginning with cleavage at the 5' splice site. This result suggests that the intron 2 fragment carries a "poison" sequence that can inhibit the splicing of an upstream intron.  相似文献   

20.
The cardiac troponin T (cTNT) pre-mRNA splices 17 exons contiguously but alternatively splices (includes or excludes) the fifth exon. Because both alternative splice products are processed from the same pre-mRNA species, the cTNT pre-mRNA must contain cis-acting sequences which specify exon 5 as an alternative exon. A cTNT minigene (SM-1) transfected into cultured cells produces mRNAs both including and excluding exon 5. The junctions of exons 4-5-6 and 4-6 in the cTNT minigene mRNAs are identical to those of endogenous cTNT mRNAs and no other exons are alternatively spliced. Thus, the SM-1 pre-mRNA is correctly alternatively spliced in transfected cells. To circumscribe the pre-mRNA regions which are required for the alternative nature of exon 5, we have constructed a systematic series of deletion mutants of SM-1. Transfection of this series demonstrates that a 1200 nt pre-mRNA region containing exons 4, 5, and 6 is sufficient to direct alternative splicing of exon 5. Within this region are two relatively large inverted repeats which potentially sequester the alternative exon via intramolecular base-pairing. Such sequestration of an alternative exon is consistent with models which propose pre-mRNA conformation as being determinative for alternative splicing of some pre-mRNAs. However, deletion mutants which remove the majority of each of the inverted repeats retain the ability to alternatively splice exon 5 demonstrating that neither is required for cTNT alternative splice site selection. Taken together, deletion analysis has limited cis elements required for alternative splicing to three small regions of the pre-mRNA containing exons 4, 5, and 6. In addition, the cTNT minigene pre-mRNA expresses both alternative splice products in a wide variety of cultured non-muscle cells as well as in cultured striated muscle cells, although expression of the cTNT pre-mRNA is normally restricted to striated muscle. This indicates that cis elements involved in defining the cTNT exon 5 as an alternative exon do not require muscle-specific factors in trans to function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号