首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Song Y  Hao Y  Sun A  Li T  Li W  Guo L  Yan Y  Geng C  Chen N  Zhong F  Wei H  Jiang Y  He F 《Proteomics》2006,6(19):5269-5277
Organelle proteome has become one of the most important fields of proteomics, and the subcellular fractionation with high purity and yield has always been a challenge for cell biologists and also for the Human Liver Proteome Project (HLPP). The liver of a C57BL/6J mouse was chosen as the model to find the optimum method for subcellular preparation. The method we selected could obtain the multiple fractions including plasma membrane, mitochondria, nucleus, ER, and cytosol from a single homogenate. With the same procedure, it is for the first time that the preparation method of frozen homogenized livers was compared with that of the fresh livers and frozen livers. We systematically evaluated the purity, efficiency, and integrity by protein yield, immunoblotting, and transmission electron microscopy. Taken together, the method of multiple fractions from a single tissue is effective enough for subcellular fractionation of mouse liver. We give a selective sample preparation method for frozen homogenized livers, for rare clinical samples, which cannot easily be used for subcellular separation immediately. But the frozen livers are not recommended for organelles isolation. This result is especially useful for sample preparation of human liver for subcellular fractionation of HLPP.  相似文献   

2.
The activation of hexadecanedioic acid has been studied in subcellular fractions of human liver. The activation capacity in a total homogenate of human liver was found to be 0.5 micro mole/min/g wet wt of tissue, about 10% of that for palmitic acid. Hexadecanedioic acid was activated by the mitochondrial and microsomal fractions. The mitochondrial enzyme is probably localized outside the inner mitochondrial compartment. The subcellular distribution of the hexadecanedioic acid activation was almost identical with the distribution of palmitic acid activation. Hexadecanedioic and palmitic acids seemed to compete for the same enzyme.  相似文献   

3.
Synthesis of phosphatidylglycerol from CDPdiacylglycerol and glycerol 3-phosphate by membranous subcellular fractions of rat lung and liver was optimal when assayed in the presence of bovine serum albumin and Triton X-100. Specific activities of glycerolphosphate phosphatidyltransferase in all membranous subcellular fractions of lung were several times higher than the corresponding fractions from liver. Distribution of this enzyme in subcellular fractions of lung or liver closely parallel the activity of the mitochondrial enzymes monoamine oxidase and succinate cytochrome c reductase. The phosphatidylglycerol-synthesizing activity in microsomes of both lung and liver was a minor fraction of total tissue activity and could be interpreted as due either to contamination with outer mitochondrial membrane or to a small amount of activity innate to microsomes. These results suggest that phosphatidylglycerol, which is believed to be a component of pulmonary surfactant, is synthesized by lung at a rapid rate relative to liver and that the subcellular distribution of its synthesis is similar in both tissues, with mitochondria as the major site.  相似文献   

4.
The distribution of iron, copper, zinc, and magnesium in hepatic subcellular fractions of male and female rats treated with 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) was determined. Animals received 40 μg TCDD per kilogram per day for three days by mouth (PO) or the vehicle and were killed seven or nine days posttreatment. Iron, copper, zinc, and magnesium were determined by atomic absorption spectroscopy. The iron content of liver from female animals was twofold higher than male animals. The administration of TCDD increased the iron content of mitochondria in female and male rats and decreased iron content of microsomes of both sexes. Significant increases occurred in the copper content of whole liver, mitochondria, and cytosol of male rats and in whole liver and cytosol of female rats. Decreases in the copper content of the microsomes of male rats were observed following TCDD treatment; however, TCDD produced no changes in the zinc content of hepatic subcellular fractions of either sex. The magnesium content of female TCDD-treated rats increased in whole liver, mitochondria, and cytosol, while the magnesium content of microsomes was not altered. With respect to the subcellular distribution of iron, copper, zinc, and magnesium, TCDD produces differential effects. The altered distribution of some cations may contribute to the broad range of effects of TCDD.  相似文献   

5.
To clarify trace element distribution in red and white muscle, and to verify two populations of muscle mitochondria, the iron, zinc, copper, and manganese concentrations of whole muscle and their subcellular fractions were determined. The iron, zinc, copper, and manganese concentrations of red muscle were 1.83, 4.31, 2.05, and 1.67 times higher than those of white muscle, respectively. In skeletal muscle subcellular distribution or iron, zinc, and copper were entirely different and that of manganese was relatively similar as compared with those in liver reported previously. The pattern of mineral distribution in all fractions of red muscle was similar to that of white muscle, but their concentrations in some fractions were different between red and white muscle, e.g., iron, zinc, and manganese in supernatant fraction and copper in nuclear and microsomal fractions. The difference between subsarcolemmal and interfibrillar mitochondria were ascertained by the distribution of trace elements.  相似文献   

6.
Monoclonal antibodies against rat liver mitochondrial phospholipase A2 were used to develop a rapid immunoaffinity chromatography for enzyme purification. The purified enzyme showed a single band upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The sequence of the N-terminal 24 amino acids was determined. This part of the sequence showed only 25% homology with that of rat pancreatic phospholipase A2 but was 96% identical to that of rat platelet and rat spleen membrane-associated phospholipase A2. These enzymes are distinguished from pancreatic phospholipases A2 by the absence of Cys-11. In rat liver phospholipase A2 activity has been reported in various subcellular fractions. All of these require Ca2+ and have a pH optimum in the alkaline region, but little is known about the structural relationship and quantitative distribution of these enzymes. We have investigated these points after solubilization of the phospholipase A2 activity from total homogenates and crude subcellular fractions by extraction with 1 M potassium chloride. Essentially all of the homogenate activity could be solubilized by this procedure indicating that the enzymes occurred in soluble or peripherally membrane-associated form. Gel filtration and immunological cross-reactivity studies indicated that phospholipases A2 solubilized from membrane fractions shared a common epitope with the mitochondrial enzyme. The quantitative distribution of the immunopurified enzyme activity among subcellular fractions followed closely that of the mitochondrial marker cytochrome c oxidase. Rat liver cytosol contained additional Ca2+-dependent and -independent phospholipase activities.  相似文献   

7.
The liver plays an important role in metabolism and elimination of xenobiotics, including drugs. Determination of concentrations of proteins involved in uptake, distribution, metabolism, and excretion of xenobiotics is required to understand and predict elimination mechanisms in this tissue. In this work, we have fractionated homogenates of snap-frozen human liver by differential centrifugation and performed quantitative mass spectrometry-based proteomic analysis of each fraction. Concentrations of proteins were calculated by the “total protein approach”. A total of 4586 proteins were identified by at least five peptides and were quantified in all fractions. We found that the xenobiotics transporters of the canalicular and basolateral membranes were differentially enriched in the subcellular fractions and that phase I and II metabolizing enzymes, the cytochrome P450s and the UDP–glucuronyl transferases, have complex subcellular distributions. These findings show that there is no simple way to scale the data from measurements in arbitrarily selected membrane fractions using a single scaling factor for all the proteins of interest. This study also provides the first absolute quantitative subcellular catalog of human liver proteins obtained from frozen tissue specimens. Our data provide quantitative insights into the subcellular distribution of proteins and can be used as a guide for development of fractionation procedures.  相似文献   

8.
Mössbauer spectroscopy was used to investigate the distribution of iron in rat organs and its localisation in liver subcellular fractions. A 57Fe-sucrose complex solution was injected by 0.5 ml doses into tail veins of anmals every day, during a 6-day period. Mössbauer spectra were measured in spleen, blood, liver and liver subcellular fractions. The Mössbauer spectrum of a spleen sample has two symmetrical doublets, one with δ=0.6 mm/s and Δ=0.7 mm/s, and the other with δ=1.0 mm/s and Δ=2.35 mm/s. The Mössbauer spectrum of blood has parameters which are close to those for carboxyhemoglobin and oxyhemoglobin complexes. After the addition of sodium citrate, the proportion of the carboxyhemoglobin complexes increases. The Mössbauer spectrum of liver has a two-component pattern with two symmetrical doublets, the first with δ=0.6 mm/s and Δ=0.63 mm/s and the second with δ=1.4 mm/s and Δ=3.45 mm/s. The first component, which was identified as ferritin, is present in all subcellular fractions (800 × gav sediment fraction, mitochondrial/lysosomal, microsomal and supernatant fractions), with its content in microsomal fraction. After the addition of NaBH4 to mitochondrial/lysosomal fraction, about 20 % of the iron contained in ferritin was reduced. In the Mössbauer spectrum this is reflected by an appearance of a doublet with δ=0.85 mm/s and Δ=3.7 mm/s.  相似文献   

9.
The tissue distribution, subcellular localization, and metabolic functions of human 17beta-hydroxysteroid dehydrogenase type 10/short chain L-3-hydroxyacyl-CoA dehydrogenase have been investigated. Human liver and gonads are abundant in this enzyme, but it is present in only negligible amounts in skeletal muscle. Its N-terminal sequence is a mitochondrial targeting sequence, but is not required for directing this protein to mitochondria. Immunocytochemical studies demonstrate that this protein, which has been referred to as ER-associated amyloid beta-binding protein (ERAB), is not detectable in the ER of normal tissues. We have established that protocols employed to investigate the subcellular distribution of ERAB yield ER fractions rich in mitochondria. Mitochondria-associated membrane fractions believed to be ER fractions were employed in ERAB/Abeta-binding alcohol dehydrogenase studies. The present studies establish that in normal tissues this protein is located in mitochondria. This feature distinguishes it from all known 17beta-hydroxysteroid dehydrogenases, and endows mitochondria with the capability of modulating intracellular levels of the active forms of sex steroids.  相似文献   

10.
We have examined whether glucocorticoids control the activity and (or) the subcellular distribution of protein kinase dependent on cyclic AMP (adenosine 3':5'-monophosphate), since they influence cyclic-AMP-dependent responses to other hormones. Protein kinase activity was determined in rat liver homogenates and subcellular fractions, nuclear, large granular, microsomal and supernatant obtained by differential sedimentation in 0.25 M sucrose. 63% of the tissue protein kinase activity detected in absence of cyclic AMP reside in the particulate fractions. Upon addition of exogenous cyclic AMP, protein kinase activity is stimulated 1.8, 1.2, 1.2 and 4.5-fold in nuclear, large granular, microsomal and supernatant fractions, respectively. Under these conditions, 66% of tissue activity are found in the supernatant fraction. The activity sensitive to exogenous cyclic AMP resolves into a major (84%) cytosoluble and a minor (16%) nucleomicrosomal component. The latter activity resists elution with isotonic saline and is increased in the presence of Triton X-100. Three groups of rats were studied: control and adrenalectomized with or without cortisol treatment. In whole liver homogenates, both protein kinase activity detected in absence of exogenous cyclic AMP and sensitivity of the enzyme to cyclic AMP were comparable in all groups. Moreover, the distribution patterns of proteins kinase activity amoung the fractions were essentially the same in all groups of animals, whether or not particles had been treated with Triton X-100. Finally, in cell-free experiments, glucocorticoids alone or in combination with their intracellular receptor did not modify protein kinase activity of rat liver. Thus the results reported do not support the possibility that glucocorticoids influence cyclic AMP-dependent protein kinase in rat liver. Yet, this study provides data, not available before, on subcellular distribution of this enzyme in rat liver.  相似文献   

11.
The fractionation of rat liver hepatocytes using a mechanical disruption technique followed by centrifugation is reported; the whole procedure requires approximately 10 min. Marker enzyme distribution data are in good agreement with distribution data from standard techniques connected with the production of three subcellular fractions—cytoplasmic, mitochondrial, and microsomal. Electrophoretic analysis of the mitochondrial and microsomal fractions show total band correspondence between the fractions produced by the method and traditional techniques. Examination of the fractions by electron microscopy supports the view that the mitochondrial fraction is comprised of both intact mitochondria and mitochondria from which the outer membrane has been removed. The microsomal fraction contains discrete vesicles derived from both rough and smooth endoplasmic reticulum.  相似文献   

12.
At least three different subcellular compartments, including peroxisomes, are involved in cholesterol biosynthesis. Because proper CNS development depends on de novo cholesterol biosynthesis, peroxisomes must play a critical functional role in this process. Surprisingly, no information is available on the peroxisomal isoprenoid/cholesterol biosynthesis pathway in normal brain tissue or on the compartmentalization of isoprene metabolism in the CNS. This has been due mainly to the lack of a well-defined isolation procedure for brain tissue, and also to the presence of myelin in brain tissue, which results in significant contamination of subcellular fractions. As a first step in characterizing the peroxisomal isoprenoid pathway in the CNS, we have established a purification procedure to isolate peroxisomes and other cellular organelles from the brain stem, cerebellum and spinal cord of the mouse brain. We demonstrate by use of marker enzymes and immunoblotting with antibodies against organelle specific proteins that the isolated peroxisomes are highly purified and well separated from the ER and mitochondria, and are free of myelin contamination. The isolated peroxisomal fraction was purified at least 40-fold over the original homogenate. In addition, we show by analytical subcellular fractionation and immunoelectron microscopy that HMG-CoA reductase protein and activity are localized both in the ER and peroxisomes in the CNS.  相似文献   

13.
The subcellular distribution of radiocopper in the brain and liver of rats has been determined following i.v. administration of Cu-PTSM, pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II), labeled with copper-67. Homogenized tissue samples were separated by differential centrifugation into four subcellular fractions: (I) cell membrane + nuclei; (II) mitochondria; (III) microsomes; and (IV) cell cytosol. Upon sacrifice at 10 min post-Cu-PTSM injection, brain fractions, I, II, III and IV contain 35 ± 12, 11 ± 3, 2.8 ± 1.3 and 51 ± 7% of brain activity, respectively (n = 4). In animals sacrificed 24 h post-injection the subcellular fractions of brain tissue show little change from the radiocopper distribution seen at 10 min post-injection, although the mitochondrial fraction may contain slightly more tracer and the cytosolic fraction slightly less (I, 40 ± 10%; II, 18 ± 5%; III, 3.4 ± 1.5%; and IV, 38 ± 5%; n = 5). Subcellular fractions I, II, III and IV of liver contain 25 ± 5, 12 ± 3, 17 ± 4 and 46 ± 6% of 67Cu tracer in animals sacrificed 10 min post-Cu-PTSM injection. An identical subcellular distribution of 67Cu, was found in the liver following i.v. administration of ionic radiocopper (as Cu-citrate). The liver and brain cytosolic fractions at 10 min post-injection were further separated by Sephadex column chromatography. In liver cytosol, three different radiocopper components with molecular weights of about 140,000, 41,000–46,000 and 10,000–16,000 Da were found. In the brain supernatant fraction, most of the radiocopper was bound to a single low molecular weight cytosolic component (14,000–16,000 Da). These results suggest that the intracellular decomposition of tracer Cu-PTSM may result in the radiocopper entering the normal cellular pools for copper ions.  相似文献   

14.
T J Singh  K P Huang 《FEBS letters》1985,190(1):84-88
The distribution of glycogen synthase (casein) kinase-1 (CK-1) among different rat tissues and subcellular fractions was investigated. Using casein, glycogen synthase and phosphorylase kinase as substrates, CK-1 activity was detected in kidney, spleen, liver, testis, lung, brain, heart, skeletal muscle and adipose tissue. The distribution of CK-1 among different subcellular fractions of rat liver was; cytosol (72.1%), microsome (17.6%), mitochondria (9.6%) and nuclei (0.7%). CK-1 from rat tissues was shown to have a similarly wide substrate specificity as highly purified CK-1 from rabbit skeletal muscle. Such wide substrate specificity and distribution among different mammalian tissues and subcellular organelles indicate that CK-1 may be involved in the regulation of diverse cellular functions.  相似文献   

15.
A method is described for the preparation of concentrated tissue extracts for nucleotideanalysis by high-performance liquid chromatography (hplc). Ten to one hundred milligrams of tissue was extracted in a combined weighing-homogenizing-centrifuge tube using a trichloracetic acid (TCA)-methanol extractant containing a radioactive internal standard. This extractant eliminated nucleotide interconversion which was found to occur when TCA alone was employed. High ATP/ADP and ATP/AMP ratios were observed and recoveries of greater than 97% were obtained with exogenous radioactive nucleotides. The method has been applied successfully in studies on muscle, heart, liver, kidney, lung, brain, and subcellular fractions.  相似文献   

16.
This work is a first attempt to determine the speciation of Cr in human plasma. With the aid of in vitro and in vivo51Cr-labeled experiments, it was possible to develop the necessary biochemical techniques for the separation of the plasma proteins. Further work will use real samples, taking care to avoid contamination of the various fractions and to preserve the original binding of the Cr to the specific plasma compounds. In a first attempt on the distribution of Cr over the different organelles of liver tissue, work will be restricted to in vivo labeled experiments with rats. The procedure to do the speciation work seems so elaborate that it may be impossible ever to achieve the contemplated speciation of Cr in human liver tissue by subcellular fractionation.  相似文献   

17.
Using 3H-dioxane, the distribution of dioxane among a number of tissues and various subcellular fractions of rat liver was studied. At various times after i.p. injection, dioxane was found to distribute more or less uniformly among various tissues (liver, kidney, spleen, lung, colon and skeletal muscle), consistent with its polar/nonpolar nature. Studies of the nature of dioxane binding, however, revealed that the extent of “covalent” binding (as measured by incorporation into lipid-free, acid-insoluble tissue residues) was significantly higher in the liver (the main carcinogenesis target tissue), spleen and colon than that in other tissues. Investigations of the subcellular distribution in liver indicated that most of the radioactivity was in the cytosol, followed by the microsomal, mitochondrial and nuclear fractions. The binding of dioxane to the macromolecules in the cytosol was mainly noncovalent. The percent covalent binding was highest in the nuclear fraction, followed by mitochondrial and microsomal fractions and the whole homogenate. Pretreatment of rats with inducers of microsomal mixed-function oxidases had no significant effect on the covalent binding of dioxane to the various subcellular fractions of the liver. There was no microsome-catalyzed invitro binding of 3H- or 14C-dioxane to DNA under conditions which brought about substantial binding of 3H-benzo[a]pyrene.  相似文献   

18.
The uptake of transferrin and iron by the rat liver was studied after intravenous injection or perfusion in vitro with diferric rat transferrin labelled with 125I and 59Fe. It was shown by subcellular fractionation on sucrose density gradients that 125I-transferrin was predominantly associated with a low-density membrane fraction, of similar density to the Golgi-membrane marker galactosyltransferase. Electron-microscope autoradiography demonstrated that most of the 125I-transferrin was located in hepatocytes. The 59Fe had a bimodal distribution, with a larger peak at a similar low density to that of labelled transferrin and a smaller peak at higher density coincident with the mitochondrial enzyme succinate dehydrogenase. Approx. 50% of the 59Fe in the low-density peak was precipitated with anti-(rat ferritin) serum. Uptake of transferrin into the low-density fraction was rapid, reaching a maximal level after 5-10 min. When livers were perfused with various concentrations of transferrin the total uptakes of both iron and transferrin and incorporation into their subcellular fractions were curvilinear, increasing with transferrin concentrations up to at least 10 microM. Analysis of the transferrin-uptake data indicated the presence of specific transferrin receptors with an association constant of approx. 5 X 10(6) M-1, with some non-specific binding. Neither rat nor bovine serum albumin was taken up into the low-density fractions of the liver. Chase experiments with the perfused liver showed that most of the 125I-transferrin was rapidly released from the liver, predominantly in an undegraded form, as indicated by precipitation with trichloroacetic acid. Approx. 40% of the 59Fe was also released. It is concluded that the uptake of transferrin-bound iron by the liver of the rat results from endocytosis by hepatocytes of the iron-transferrin complex into low-density vesicles followed by release of iron from the transferrin and recycling of the transferrin to the extracellular medium. The iron is rapidly incorporated into mitochondria and cytosolic ferritin.  相似文献   

19.
An improved method for the homogenization and the subsequent subcellular fractionation of hepatocytes isolated from adult rat liver is described.The homogenization procedure developed in the present study allows the preservation of the integrity of subcellular structures, as demonstrated by measurement of the activities of representative enzymes as well as by determination of their latency.The activities of representative marker enzymes, as calculated on subcellular fractions obtained by differential centrifugation of the homogenate, are identical whether the homogenate arises from isolated hepatocytes or from the whole liver.Moreover, there is a close similitude between the kinetic parameters (Km and V) of two microsomal cytochrome P450-dependent mixed-function oxidases, namely aniline hydroxylase and aminopyrine demethylase determined on microsomal preparations obtained either from isolated cells or from the whole liver.  相似文献   

20.
A one-step column chromatographic procedure on DEAE-Sephacel allows the separation of mannosylretinylphosphate from dolichylmannosylphosphate with minimal breakdown of the mannosylretinylphosphate. Using this procedure, subcellular fractions of rat liver were shown to be active in synthesizing both mannolipids from GDP-[14C]mannose in the absence or presence of exogenous retinylphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号