首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.  相似文献   

2.
Possible promoter regions preceding 14 genes belonging to the proteolytic system of Streptococcus thermophilus KLDS 3.0503 were predicted by a promoter analysis software nnpp . The 14 genes included an extracellular protease gene prtS , an oligopeptide ABC transport system gene amiA1 , and 12 genes, respectively, encoding peptidases pepA, pepS , pepN, pepC , pepB, pepQ , pepV, pepT , pepM, pepXP , pepP , and pepO . These predicted promoter sequences were cloned and inserted into the upstream of a promoterless Escherichia coli gusA (β-glucuronidase) gene in a promoter probe vector pNZ273. The resulting vectors were, respectively, introduced into S. thermophilus KLDS 3.0503 and all 14 predicted promoter sequences were able to drive gusA expression, which indicated that these sequences were functional promoters. These promoters were able to interact with the S. thermophilus CodY homolog in an in vitro DNA binding assay but they did not contain a conserved CodY-box sequence identified in Lactococcus lactis . These results were useful for further studies on the regulation of protein metabolism in S. thermophilus .  相似文献   

3.
4.
5.
Lactococcus lactis subsp. lactis CNRZ 1123, a Lac- derivative of CNRZ 1122 was transformed by electroporation with the Lactobacillus casei ATCC 393 plasmid pLZ15, which bears a β-galactosidase gene. The transformants expressed a constitutive β-galactosidase activity at a higher level than in Lact. casei , and in the cell-free extract two additional protein bands were detected by SDS-PAGE which could correspond to lactose metabolism enzymes. Both plasmid and β-gal activity were stable in Lactococcus after 100 generations in glucose-containing medium.  相似文献   

6.
Genes encoding three putative endopeptidases were identified from a draft-quality genome sequence of Lactobacillus helveticus CNRZ32 and designated pepO3, pepF, and pepE2. The ability of cell extracts from Escherichia coli DH5alpha derivatives expressing CNRZ32 endopeptidases PepE, PepE2, PepF, PepO, PepO2, and PepO3 to hydrolyze the model bitter peptides, beta-casein (beta-CN) (f193-209) and alpha(S1)-casein (alpha(S1)-CN) (f1-9), under cheese-ripening conditions (pH 5.1, 4% NaCl, and 10 degrees C) was examined. CNRZ32 PepO3 was determined to be a functional paralog of PepO2 and hydrolyzed both peptides, while PepE and PepF had unique specificities towards alpha(S1)-CN (f1-9) and beta-CN (f193-209), respectively. CNRZ32 PepE2 and PepO did not hydrolyze either peptide under these conditions. To demonstrate the utility of these peptidases in cheese, PepE, PepO2, and PepO3 were expressed in Lactococcus lactis, a common cheese starter, using a high-copy vector pTRKH2 and under the control of the pepO3 promoter. Cell extracts of L. lactis derivatives expressing these peptidases were used to hydrolyze beta-CN (f193-209) and alpha(S1)-CN (f1-9) under cheese-ripening conditions in single-peptide reactions, in a defined peptide mix, and in Cheddar cheese serum. Peptides alpha(S1)-CN (f1-9), alpha(S1)-CN (f1-13), and alpha(S1)-CN (f1-16) were identified from Cheddar cheese serum and included in the defined peptide mix. Our results demonstrate that in all systems examined, PepO2 and PepO3 had the highest activity with beta-CN (f193-209) and alpha(S1)-CN (f1-9). Cheese-derived peptides were observed to affect the activity of some of the enzymes examined, underscoring the importance of incorporating such peptides in model systems. These data indicate that L. helveticus CNRZ32 endopeptidases PepO2 and PepO3 are likely to play a key role in this strain's ability to reduce bitterness in cheese.  相似文献   

7.
A transferable dual-plasmid inducible gene expression system for use in lactic acid bacteria that is based on the autoregulatory properties of the antimicrobial peptide nisin produced by Lactococcus lactis was developed. Introduction of the two plasmids allowed nisin-inducible gene expression in Lactococcus lactis MG1363, Leuconostoc lactis NZ6091, and Lactobacillus helveticus CNRZ32. Typically, the beta-glucuronidase activity (used as a reporter in this study) remained below the detection limits under noninducing conditions and could be raised to high levels, by addition of subinhibitory amounts of nisin to the growth medium, while exhibiting a linear dose-response relationship. These results demonstrate that the nisin-inducible system can be functionally implemented in lactic acid bacteria other than Lactococcus lactis.  相似文献   

8.
9.
Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L. bulgaricus ATCC 11842, Lactobacillus casei BL23, and Lactococcus lactis MG1363. While the protein could be detected in all heterologous hosts, enzyme activity was observed only in L. casei. This is probably due to the differences in the Mn contents of the cells, which are reportedly similar in L. plantarum and L. casei but at least 10- and 100-fold lower in Lactococcus lactis and L. bulgaricus, respectively. The expression of the MnKat gene in L. casei conferred enhanced oxidative stress resistance, as measured by an increase in the survival rate after exposure to H2O2, and improved long-term survival in aerated cultures. In mixtures of L. casei producing MnKat and L. bulgaricus, L. casei can eliminate H2O2 from the culture medium, thereby protecting both L. casei and L. bulgaricus from its deleterious effects.  相似文献   

10.
Peptides derived from hydrolysis of alpha(S1)-casein(f1-9) [alpha(S1)-CN(f1-9)] and beta-CN(f193-209) with cell extracts of Lactobacillus helveticus CNRZ32 and single-peptidase mutants (Delta pepC, Delta pepE, Delta pepN, Delta pepO, and Delta pepX) were isolated by using reverse-phase high-performance liquid chromatography and were characterized by mass spectrometry. The peptides identified suggest that there was activity of an endopeptidase, distinct from previously identified endopeptidases (PepE and PepO), with specificity for peptide bonds C terminal to Pro residues. Identification of hydrolysis products derived from a carboxyl-blocked form of beta-CN(f193-209) confirmed that the peptides were derived from the activity of an endopeptidase.  相似文献   

11.
12.
The promoter-like sequence P15 that was previously cloned from the chromosome of Lactobacillus acidophilus ATCC 4356 is active in Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus acidophilus, and Escherichia coli, but not in Lactococcus lactis. N-methyl-N-nitroso-N-guanidine (MNNG) mutagenesis of P15 was used to select for a promoter active in L. lactis MG1363. Molecular analysis of the mutated promoter (designated P16) revealed a 90 bp deletion and a T-->A transversion. This deletion, in combination with the addition to the transversion, created a promoter with putative -35 and -10 hexamers identical to the consensus promoter sequence found in E. coli and Bacillus subtilis vegetative promoters. The activity of P16 was measured by its ability to promote chloramphenicol resistance in different bacteria when inserted in the promoter-probe plasmid pBV5030 (designated pLA16). The MIC of chloramphenicol in L. lactis, L. reuteri, L. plantarum, E. coli, and L. acidophilus harbouring pLA16 were 30, 170, 180, > 500, and 3 micrograms/mL, respectively. This represents an increase in promoter activity compared to P15 in L. reuteri of 3-fold, in L. plantarum of 9-fold, and in E. coli of at least 2.5-fold, but a decrease in L. acidophilus of 7-fold.  相似文献   

13.
An endopeptidase gene (pepE) was isolated from a previously constructed genomic library of Lactobacillus helveticus CNRZ32. The pepE gene consisted of a 1,314-bp open reading frame encoding a putative peptide of 52.1 kDa. Significant identity was found between the deduced amino acid sequence of pepE and the sequences for aminopeptidase C from Lactobacillus delbrueckii subsp. lactis DSM7290, L. helveticus CNRZ32, Streptococcus thermophilus CNRZ302, and Lactococcus lactis subsp. cremoris AM2. A recombinant PepE fusion protein containing an N-terminal six-histidine tag was constructed and purified to electrophoretic homogeneity. Characterization of PepE revealed that it was a thiol-dependent protease having a monomeric mass of 50 kDa, with optimum temperature, NaCl concentration, and pH for activity at 32 to 37 degrees C, 0.5%, and 4.5, respectively. PepE had significant activity under conditions which simulate those of ripening cheese (10 degrees C, 4% NaCl, pH 5.1). PepE hydrolyzed internal peptide bonds in Met-enkephalin and bradykinin; however, hydrolysis of alpha-, beta-, and kappa-caseins was not detected.  相似文献   

14.
Mucosal epithelia constitute the first barriers to be overcome by pathogens during infection. The induction of protective IgA in this location is important for the prevention of infection and can be achieved through different mucosal immunization strategies. Lactic acid bacteria have been tested in the last few years as live vectors for the delivery of antigens at mucosal sites, with promising results. In this work, Streptococcus pneumoniae PsaA antigen was expressed in different species of lactic acid bacteria, such as Lactococcus lactis, Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus helveticus. After nasal inoculation of C57Bl/6 mice, their ability to induce both systemic (IgG in serum) and mucosal (IgA in saliva, nasal and bronchial washes) anti-PsaA antibodies was determined. Immunization with L. lactis MG1363 induced very low levels of IgA and IgG, possibly by the low amount of PsaA expressed in this strain and its short persistence in the nasal mucosa. All three lactobacilli persisted in the nasal mucosa for 3 days and produced a similar amount of PsaA protein (150-250 ng per 10(9) CFU). However, L. plantarum NCDO1193 and L. helveticus ATCC15009 elicited the highest antibody response (IgA and IgG). Vaccination with recombinant lactobacilli but not with recombinant L. lactis led to a decrease in S. pneumoniae recovery from nasal mucosa upon a colonization challenge. Our results confirm that certain Lactobacillus strains have intrinsic properties that make them suitable candidates for mucosal vaccination experiments.  相似文献   

15.
16.
Diversity in 25 Lactobacillus helveticus strains isolated from natural whey cultures for Argentinian hard cheese production was studied by means of RAPD-PCR patterns and technological parameters (acidifying and proteolytic activities, salt tolerance, diacetyl, H2O2 and slime production, phage sensitivity). In the RAPD diversity study, 10 Lact. helveticus strains from the CNRZ collection were also included.
The clustering of RAPD patterns from the Argentinian strains revealed the existence of two Lact. helveticus biotypes. Cluster 1 contained 22 strains (15 wild and seven CNRZ collection strains), Cluster 2 grouped 10 wild strains and Cluster 3 contained only three CNRZ collection strains. RAPD groups could be related to specific cheese-making characteristics (cheese plants). Analysis of technological characteristics in the Argentinian strains showed the occurrence of different natural variants. According to their capacity for growing in milk, they were classified as 'fast', 'intermediate' and 'slow' variants. Among the strains, low salt tolerance and widespread phage resistance were demonstrated. The genetic diversity (RAPD-PCR clustering) did not show any clear relationship with phenotypical diversity. Study of genetic and technological diversity allows a better characterization of wild strains belonging to Lact. helveticus .  相似文献   

17.
AIMS: To exploit promoters involved in production of the bacteriocin sakacin P for regulated overexpression of genes in Lactobacillus plantarum C11. METHODS AND RESULTS: Production of sakacin P by Lact. sakei LTH673 is controlled by a peptide-based quorum sensing system that drives strong, regulated promoters. One of these promoters (PorfX) was used to establish regulated overexpression of genes encoding chloramphenicol acetyltransferase from Bacillus pumilus, aminopeptidase N from Lactococcus lactis or chitinase B from Serratia marcescens in Lact. plantarum C11, a strain that naturally possesses the regulatory machinery that is necessary for promoter activation. The expression levels obtained were highly dependent on which gene was used and on how the promoter was coupled to this gene. The highest expression levels (14% of total cellular protein) were obtained with the aminopeptidase N gene translationally fused to the regulated promoter. CONCLUSIONS: Sakacin promoters permit regulated expression of a variety of genes in Lact. plantarum C11. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the usefulness of regulated bacteriocin promoters for developing new gene expression systems for lactic acid bacteria, in particular lactobacilli.  相似文献   

18.
P.S. COCCONCELLI, D. PORRO, S. GALANDINI AND L. SENINI. 1995. A protocol for typing strains of lactic acid bacteria and enterococci based on randomly amplified polymorphic DNA (RAPD) fragments has been developed. Using a single 10-mer primer, fingerprints were achieved without the need to isolate genomic DNA. Different conditions of DNA release and amplification were investigated in order to obtain reproducible results and high discrimination among strains. This RAPD protocol was successfully applied for the typing of strains belonging to the species Lactobacillus acidophilus, Lact. helveticus, Lact. casei, Lact. reuteri, Lact. plantarum, Enterococcus faecalis, Ent. faecium and Streptococcus thermophilus.  相似文献   

19.
作为宿主系统的几株乳酸菌的表型特征   总被引:4,自引:0,他引:4  
目的:研究乳酸菌载体-宿主系统。方法:采用涂片染色和形态特征观察,用鉴别生化实验如过氧化氢酶实验,碳水化合物发酵产酸实验,精氨酸水解实验及抗生素抗性实验等对含有pMG36e质粒的乳酸菌MG1363,乳球菌IL1403和乳杆菌ATCC4356进行研究鉴定。结果:乳酸乳球菌乳脂亚种MG1363,乳酸乳球菌乳酸亚种IL1403含有质粒pMG36e的MG1363致及嗜酸乳杆菌ATCC4356其表型特征分别与伯杰氏手册中相应细菌特征一致,质粒pMG36e含有红霉素抗性基因,结论:此乳酸菌宿主一载体系统可用载体来源的红霉素抗性进行筛选,用于外源基因在乳酸菌中克隆和表达的研究。  相似文献   

20.
DNA fragments with promoter activity were isolated from the chromosome of Lactococcus lactis subsp. lactis. For the isolation, a promoter probe vector based on the cat gene was constructed, which allowed direct selection with chloramphenicol in Bacillus subtilis and L. lactis. Four of the putative promoters (P1, P2, P10, and P21) were analyzed further by sequencing, mapping of the 5' end of the mRNA, Northern (RNA blot) hybridization, and chloramphenicol acetyltransferase activity measurements. From these fragments, -10 and -35 regions resembling the consensus Escherichia coli sigma 70 and B. subtilis sigma 43 promoters were identified. Another set of promoters, together with a signal sequence, were also isolated from the same organism. These fragments promoted secretion of TEM beta-lactamase from L. lactis. When the two sets of promoters were compared, it was found that the ones isolated with the cat vector were more efficient (produced more mRNA). By changing the promoter part of the promoter-signal sequence fragment giving the best TEM beta-lactamase secretion into a more efficient one (P2), a 10-fold increase in enzyme production was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号