首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interferons, via specific membrane-bound receptors, induce various cellular functions of which antiviral protection is the most extensively studied. We have previously reported the existence of interferon antagonists (referred to as sarcolectins) in various tissue extracts from placental blood, cartilage, brain, muscle, or from sarcomas. These sarcolectins have been fully characterized and purified to homogeneity. In interferon-treated cells, they restore virus sensitivity 4-6 h after the establishment of antiviral protection. In the present study we investigate the effect of sarcolectins on the steady state levels of two double-stranded RNA dependent enzymes, 2-5A (p chi (A2'p)nA) synthetase and protein kinase. Several authors have previously emphasized the role of these enzymes in the mechanism of interferon's antiviral action. Interferon promotes a 4-8 fold increase in protein kinase and 2-5A synthetase in cells. Addition of sarcolectin 5 h after interferon results in a dramatic reduction in the steady state levels of both these enzymes, as shown by their decreased activity and yield observed in Western blot assays. The degradation of the antiviral response in sarcolectin-treated cells might therefore be at least partially attributed to a reduced synthesis of protein kinase and 2-5A synthetase. Since there are no direct interactions between sarcolectins and interferon or its receptors, it can be postulated that sarcolectins exert their effect through these interferon-dependent proteins. We postulate that the opposing biological effects of interferon and sarcolectins strike a balance which may, however, be modified in one direction or the other, depending on their respective concentrations.  相似文献   

2.
Aspartyl-tRNA synthetase from higher eukaryotes is a component of a multienzyme complex comprising nine aminoacyl-tRNA synthetases. The cDNA encoding cytoplasmic rat liver aspartyl-tRNA synthetase was previously cloned and sequenced. This work reports the identification of structural features responsible for its association within the multisynthetase complex. Mutant and chimeric proteins have been expressed in mammalian cells and their structural behavior analyzed. A wild-type rat liver aspartyl-tRNA synthetase, expressed in Chinese hamster ovary (CHO) cells, associates within the complex from CHO cells, whereas a mutant enzyme with a deletion of 34 amino acids from its amino-terminal extremity does not. A chimeric enzyme, made of the amino-terminal moiety of rat liver aspartyl-tRNA synthetase fused to the catalytic domain of yeast lysyl-tRNA synthetase, has been expressed in Lys-101 cells, a CHO cell line with a temperature-sensitive lysyl-tRNA synthetase. The fusion protein is stable in vivo, does not associate within the multisynthetase complex and cannot restore normal growth of the mutant cells. These results establish that the 3.7-kDa amino-terminal moiety of mammalian aspartyl-tRNA synthetase mediates its association with the other components of the complex. In addition, the finding that yeast lysyl-tRNA synthetase cannot replace the aspartyl-tRNA synthetase component of the mammalian complex, indicates that interactions between neighbouring enzymes also play a prominent role in stabilization of this multienzyme structure and strengthened the view that the multisynthetase complex is a discrete entity with a well-defined structural organization.  相似文献   

3.
The deep-sea tube worm Riftia pachyptila (Vestimentifera) from hydrothermal vents lives in an intimate symbiosis with a sulfur-oxidizing bacterium. That involves specific interactions and obligatory metabolic exchanges between the two organisms. In this work, we analyzed the contribution of the two partners to the biosynthesis of pyrimidine nucleotides through both the "de novo" and "salvage" pathways. The first three enzymes of the de novo pathway, carbamyl-phosphate synthetase, aspartate transcarbamylase, and dihydroorotase, were present only in the trophosome, the symbiont-containing tissue. The study of these enzymes in terms of their catalytic and regulatory properties in both the trophosome and the isolated symbiotic bacteria provided a clear indication of the microbial origin of these enzymes. In contrast, the succeeding enzymes of this de novo pathway, dihydroorotate dehydrogenase and orotate phosphoribosyltransferase, were present in all body parts of the worm. This finding indicates that the animal is fully dependent on the symbiont for the de novo biosynthesis of pyrimidines. In addition, it suggests that the synthesis of pyrimidines in other tissues is possible from the intermediary metabolites provided by the trophosomal tissue and from nucleic acid degradation products since the enzymes of the salvage pathway appear to be present in all tissues of the worm. Analysis of these salvage pathway enzymes in the trophosome strongly suggested that these enzymes belong to the worm. In accordance with this conclusion, none of these enzyme activities was found in the isolated bacteria. The enzymes involved in the production of the precursors of carbamyl phosphate and nitrogen assimilation, glutamine synthetase and nitrate reductase, were also investigated, and it appears that these two enzymes are present in the bacteria.  相似文献   

4.
The biosynthesis of the glycopeptide antibiotics, of which teicoplanin and vancomycin are representative members, relies on the combination of non‐ribosomal peptide synthesis and modification of the peptide by cytochrome P450 (Oxy) enzymes while the peptide remains bound to the peptide synthesis machinery. We have structurally characterized the final peptidyl carrier protein domain of the teicoplanin non‐ribosomal peptide synthetase machinery: this domain is believed to mediate the interactions with tailoring Oxy enzymes in addition to its function as a shuttle for intermediates between multiple non‐ribosomal peptide synthetase domains. Using solution state NMR, we have determined structures of this PCP domain in two states, the apo and the post‐translationally modified holo state, both of which conform to a four‐helix bundle assembly. The structures exhibit the same general fold as the majority of known carrier protein structures, in spite of the complex biosynthetic role that PCP domains from the final non‐ribosomal peptide synthetase module must play in glycopeptide antibiotic biosynthesis. These structures thus support the hypothesis that it is subtle rearrangements, rather than dramatic conformational changes, which govern carrier protein interactions and selectivity during non‐ribosomal peptide synthesis. Proteins 2015; 83:711–721. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
6.
Human tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS) are closely related, dual function enzymes that act in protein biosynthesis and angiogenesis. The recent crystallographic structures of these two enzymes show that they adopt remarkably similar three-dimensional (3D) architectures, being more like each other than like their respective prokaryotic orthologs. In particular, adaptations to the anticodon recognition domain of TyrRS cause distinct appended domains in TyrRS and TrpRS to occupy the same 3D space and thus to mask a common surface on each synthetase. Thought to be important for cell-signaling activity, this surface is made accessible by proteolytic cleavage, thereby activating the cell-signaling function of these enzymes.  相似文献   

7.
A novel procedure for immobilization of enzymatically active fatty acid synthetase is presented. The enzyme is coupled to a Sepharose 4B matrix containing covalently attached antibodies which recognize, and bind specifically to, the thioesterase domain of this polyfunctional enzyme. A continuous flow system is described for assay of the immobilized enzyme. Fatty acid synthetase activity apparently is not limited by movement of substrates through the Nernst diffusion layer surrounding the matrix particles, since normal Michaelis-Menten kinetics are observed and reaction rates are independent of flow rate. The Km values for acetyl-CoA and malonyl-CoA, the pH/activity profile, and the reaction products are essentially the same as for the freely soluble enzyme, although the specific activity is lower by about 55%. The preparation and characterization of immobilized subunits of the enzyme could provide a valuable approach for studying the role of structural and functional subunit interactions in the enzyme. In addition, the immobilized enzyme offers a model for studying the properties of this enzyme in a highly structured environment such as might exist in vivo, permitting study of both physical and functional interactions of fatty acid synthetase with other lipogenic enzymes.  相似文献   

8.
Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multimeric protein complex consisting of three distinct and separate components: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source and has a distinct architecture that is characteristic of the ATP-grasp superfamily of enzymes. Included in this superfamily are d-Ala d-Ala ligase, glutathione synthetase, carbamyl phosphate synthetase, N(5)-carboxyaminoimidazole ribonucleotide synthetase, and glycinamide ribonucleotide transformylase, all of which have known three-dimensional structures and contain a number of highly conserved residues between them. Four of these residues of biotin carboxylase, Lys-116, Lys-159, His-209, and Glu-276, were selected for site-directed mutagenesis studies based on their structural homology with conserved residues of other ATP-grasp enzymes. These mutants were subjected to kinetic analysis to characterize their roles in substrate binding and catalysis. In all four mutants, the K(m) value for ATP was significantly increased, implicating these residues in the binding of ATP. This result is consistent with the crystal structures of several other ATP-grasp enzymes, which have shown specific interactions between the corresponding homologous residues and cocrystallized ADP or nucleotide analogs. In addition, the maximal velocity of the reaction was significantly reduced (between 30- and 260-fold) in the 4 mutants relative to wild type. The data suggest that the mutations have misaligned the reactants for optimal catalysis.  相似文献   

9.
The first 3 reaction steps of the de novo pyrimidine biosynthetic pathway are catalyzed by carbamoyl-phosphate synthetase II (CPSII), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), respectively. In eukaryotes, these enzymes are structurally classified into 2 types: (1) a CPSII-DHO-ATC fusion enzyme (CAD) found in animals, fungi, and amoebozoa, and (2) stand-alone enzymes found in plants and the protist groups. In the present study, we demonstrate direct intermolecular interactions between CPSII, ATC, and DHO of the parasitic protist Trypanosoma cruzi, which is the causative agent of Chagas disease. The 3 enzymes were expressed in a bacterial expression system and their interactions were examined. Immunoprecipitation using an antibody specific for each enzyme coupled with Western blotting-based detection using antibodies for the counterpart enzymes showed co-precipitation of all 3 enzymes. From an evolutionary viewpoint, the formation of a functional tri-enzyme complex may have preceded-and led to-gene fusion to produce the CAD protein. This is the first report to demonstrate the structural basis of these 3 enzymes as a model of CAD. Moreover, in conjunction with the essentiality of de novo pyrimidine biosynthesis in the parasite, our findings provide a rationale for new strategies for developing drugs for Chagas disease, which target the intermolecular interactions of these 3 enzymes.  相似文献   

10.
Golgi membranes of pea seedling tissue contain a UDP xylose:polysaccharide xylosyl transferase, the action of which is stimulated by UDP glucose. In the presence of both nucleotide-sugars a heteropolysaccharide containing both xylose and glucose (xyloglucan) is produced. Transfer of xylose and glucose units is presumed to be due to separate enzymes, because their properties differ in a number of respects. Xylosyl units appear to be transferred to a glucan core polysaccharide that is produced from UDP glucose by β-1,4-glucan synthetase. This, rather than cellulose biosynthesis, is inferred to be the in vivo role of Golgi membrane β-1,4-glucan synthetase.  相似文献   

11.
The cellular defense system (including glutathione, glutathione-related enzymes, antioxidant and redox enzymes) plays a crucial role in cell survival and growth in aerobic organisms. To understand its physiological role in tumor cells, the glutathione content and related enzyme activities in the human normal hepatic cell line, Chang and human hepatoma cell line, HepG2, were systematically measured and compared. Superoxide dismutase, catalase, and glutathione peroxidase activities are 2.8-, 4.3-, and 2.9-fold higher in HepG2 cells than in Chang cells. Total glutathione content is also about 1.4-fold higher in HepG2, which is supported by significant increases in gamma-glutamylcysteine synthetase and glutathione synthetase activities. Two other glutathione-related enzymes, glutathione reductase and gamma-glutamyltranspeptidase, are upregulated in HepG2 cells. However, thioredoxin reductase and glutathione S-transferase activities are significantly lower in HepG2 cells. These results propose that defense-related enzymes are largely modulated in tumor cells, which might be linked to their growth and maintenance.  相似文献   

12.
Adenylosuccinate synthetases from different sources contain an N-terminal glycine-rich sequence GDEGKGK, which is homologous to the conserved sequence GXXXXGK found in many other guanine nucleotide-binding proteins or enzymes. To determine the role of this sequence in the structure and function of Escherichia coli adenylosuccinate synthetase, site-directed mutagenesis was performed to generate five mutant enzymes: G12V (Gly12----Val), G15V (Gly15----Val), G17V (Gly17----Val), K18R (Lys18----Arg), and I19T (Ile19----Thr). Comparison of the kinetic properties of the wild-type enzyme and those of the mutant enzymes revealed that the sequence is critical for enzyme activity. Replacement of Gly12, Gly15, or Gly17 with Val, or replacement of Lys18 with Arg, resulted in significant decreases in the kcat/Km values of the enzyme. Because the consensus sequence GXXXXGK(T/S) has been found in many GTP-binding proteins, isoleucine at position 19 in the E. coli adenylosuccinate synthetase was changed to threonine to produce the sequence GDEGKGKT. This mutation, which more closely resembles the consensus sequence, resulted in a 160-fold increase in the Km value for substrate GTP; however, there were no great changes for the other two substrates, IMP and aspartate. Based on these data, we suggest that the N-terminal glycinerich sequence in E. coli adenylosuccinate synthetase plays a more important role in enzyme catalysis than in substrate binding. In addition, a hydrophobic amino acid residue such as isoleucine, leucine, or valine, rather than threonine, may play a critical role in GTP binding in adenosuccinate synthetase. These findings suggest that the glycine-rich sequence in adenylosuccinate synthetase functions differently relative to those in other GTP binding proteins or enzymes.  相似文献   

13.
In order to gain some insight into the structural parameters important for aminoacyl-tRNA synthetase complex formation, we have examined the effect of various salts and detergents on the stability and structure of the synthetase complex. Certain neutral salts were found to inactivate aminoacyl-tRNA synthetase activities in the complex, and the order of effectiveness in this process followed a classical Hofmeister series. In addition, one of these salts, NaSCN, was also effective in partially dissociating the complex. Detergents varied in their ability to inactivate synthetases, with ionic detergents being most effective and nonionic detergents being much less destructive. Detergents, by themselves, could partially disrupt the complex; however, in the presence of 1 M NaCl, nonionic detergents did lead to considerable dissociation of synthetases and generation of low molecular weight forms of these enzymes. Removal of lipids from the complex with the nonionic detergent, Triton X-114, rendered arginyl-tRNA synthetase sensitive to the addition of NaCl. However, this salt sensitivity was abolished by readdition of a lipid extract isolated from the complex. These results implicate hydrophobic interactions in the stability of the synthetase complex, and suggest the possible involvement of lipids in maintaining its structural integrity.  相似文献   

14.
Glutathione synthetase is an enzyme that belongs to the glutathione synthetase ATP-binding domain-like superfamily. It catalyzes the second step in the biosynthesis of glutathione from gamma-glutamylcysteine and glycine in an ATP-dependent manner. Glutathione synthetase has been purified and sequenced from a variety of biological sources; still, its exact mechanism is not fully understood. A variety of structural alignment methods were applied and four highly conserved residues of human glutathione synthetase (Glu-144, Asn-146, Lys-305, and Lys-364) were identified in the binding site. The function of these was studied by experimental and computational site-directed mutagenesis. The three-dimensional coordinates for several human glutathione synthetase mutant enzymes were obtained using molecular mechanics and molecular dynamics simulation techniques, starting from the reported crystal structure of human glutathione synthetase. Consistent with circular dichroism spectroscopy, our results showed no major changes to overall enzyme structure upon residue mutation. However, semiempirical calculations revealed that ligand binding is affected by these mutations. The key interactions between conserved residues and ligands were detected and found to be essential for enzymatic activity. Particularly, the negatively charged Glu-144 residue plays a major role in catalysis.  相似文献   

15.
The aminoacyl-tRNA synthetases arose early in evolution and established the rules of the genetic code through their specific interactions with amino acids and RNA molecules. About half of these tRNA charging enzymes are class I synthetases, which contain similar N-terminal nucleotide-fold-like structures that are joined to variable domains implicated in specific protein-tRNA contacts. Here, we show that a bacterial synthetase gene can be split into two nonoverlapping segments. We split the gene for Escherichia coli methionyl-tRNA synthetase (a class I synthetase) at several sites near the interdomain junction, such that one segment codes for the nucleotide-fold-containing domain and the other provides determinants for tRNA recognition. When the segments are folded together, they can recognize and charge tRNA, both in vivo and in vitro. We postulate that an early step in the assembly of systems to attach amino acids to specific RNA molecules may have involved specific interactions between discrete proteins that is reflected in the interdomain contacts of modern synthetases.  相似文献   

16.
o-Succinylbenzoyl-CoA synthetase, or MenE, is an essential adenylate-forming enzyme targeted for development of novel antibiotics in the menaquinone biosynthesis. Using its crystal structures in a ligand-free form or in complex with nucleotides, a conserved pattern is identified in the interaction between ATP and adenylating enzymes, including acyl/aryl-CoA synthetases, adenylation domains of nonribosomal peptide synthetases, and luciferases. It involves tight gripping interactions of the phosphate-binding loop (P-loop) with the ATP triphosphate moiety and an open-closed conformational change to form a compact adenylation active site. In MenE catalysis, this ATP-enzyme interaction creates a new binding site for the carboxylate substrate, allowing revelation of the determinants of substrate specificities and in-line alignment of the two substrates for backside nucleophilic substitution reaction by molecular modeling. In addition, the ATP-enzyme interaction is suggested to play a crucial catalytic role by mutation of the P-loop residues hydrogen-bonded to ATP. Moreover, the ATP-enzyme interaction has also clarified the positioning and catalytic role of a conserved lysine residue in stabilization of the transition state. These findings provide new insights into the adenylation half-reaction in the domain alteration catalytic mechanism of the adenylate-forming enzymes.  相似文献   

17.
The obligate homodimer human glutathione synthetase (hGS) provides an ideal system for exploring the role of protein–protein interactions in the structural stability, activity and allostery of enzymes. The two active sites of hGS, which are 40 Å apart, display allosteric modulation by the substrate γ-glutamylcysteine (γ-GC) during the synthesis of glutathione, a key cellular antioxidant. The two subunits interact at a relatively small dimer interface dominated by electrostatic interactions between S42, R221, and D24. Alanine scans of these sites result in enzymes with decreased activity, altered γ-GC affinity, and decreased thermal stability. Molecular dynamics simulations indicate these mutations disrupt interchain bonding and impact the tertiary structure of hGS. While the ionic hydrogen bonds and salt bridges between S42, R221, and D24 do not mediate allosteric communication in hGS, these interactions have a dramatic impact on the activity and structural stability of the enzyme.  相似文献   

18.
Biotin functions as a covalently bound cofactor of biotindependent carboxylases. Biotin attachment is catalyzed by biotin protein ligases, called holocarboxylase synthetase in mammals and BirA in prokaryotes. These enzymes show a high degree of sequence similarity in their biotinylation domains but differ markedly in the length and sequence of their N terminus. BirA is also the repressor of the biotin operon, and its DNA attachment site is located in its N terminus. The function of the eukaryotic N terminus is unknown. Holocarboxylase synthetase with N- and C-terminal deletions were evaluated for the ability to catalyze biotinylation after expression in Escherichia coli using bacterial and human acceptor substrates. We showed that the minimum functional protein is comprised of the last 349 of the 726-residue protein, which includes the biotinylation domain. Significantly, enzyme containing intermediate length, N-terminal deletions interfered with biotin transfer and interaction with different peptide acceptor substrates. We propose that the N terminus of holocarboxylase synthetase contributes to biotinylation through N- and C-terminal interactions and may affect acceptor substrate recognition. Our findings provide a rationale for the biotin responsiveness of patients with point mutations in the N-terminal sequence of holocarboxylase synthetase. Such mutant enzyme may respond to biotin-mediated stabilization of the substrate-bound complex.  相似文献   

19.
Temperature-sensitive mutations in the isoleucyl-transfer ribonucleic acid (tRNA) synthetase of yeast, ilS(-)1-1 and ilS(-)1-2, were used to examine the role of aminoacyl-tRNA synthetase enzymes in the regulation of ribonucleic acid (RNA) synthesis and enzyme synthesis in a eucaryotic organism. At the permissive temperature, 70 to 100% of the intracellular isoleucyl-tRNA was charged in mutants carrying these mutations; at growth-limiting temperatures, less than 10% was charged with isoleucine. Other aminoacyl-tRNA molecules remained essentially fully charged under both conditions. Net protein and RNA syntheses were rapidly inhibited when the mutant was shifted from the permissive to the restrictive temperature. Most of the ribosomes remained in polyribosome structures at the restrictive temperature even though protein synthesis was strongly inhibited. Two of the enzymes of isoleucine biosynthesis, threonine deaminase and acetohydroxyacid synthetase, were derepressed about twofold during slow growth of the mutants at a growth-limiting temperature. This is about the same degree of derepression that is achieved by growth of an auxotroph on limiting isoleucine. We conclude that charged aminoacyl-tRNA is essential for RNA synthesis and for the multivalent repression of the isoleucine biosynthetic enzymes. Aminoacyl tRNA synthetase enzymes appear to play important regulatory roles in the cell physiology of eucaryotic organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号