首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract: For a study of the underlying mechanisms of a possible interaction between ethanol and nicotinic receptors during ethanol dependence, the aim of this work was to investigate the effect of chronic ethanol exposure on nicotinic receptor subtypes in a transfected fibroblast cell line (M10 cells) stably expressing α4β2 nicotinic receptor subtype and an SH-SY5Y neuroblastoma cell line expressing α3, α5, α7, β2, and β4 nicotinic acetylcholine receptor (nAChR) subunits. A significant dose-related decrease (−30–80%) in number of [3H]nicotine binding sites was observed in ethanol-treated (25–240 m M ) compared with untreated M10 cells. Similarly, 4-day treatment with ethanol in concentrations relevant to chronic alcoholism (100 m M ) decreased the number of nicotinic receptor binding sites in the SH-SY5Y cells when measured using [3H]epibatidine. When M10 cells were chronically treated with nicotine, ethanol partly inhibited the up-regulation of nicotinic receptors when present in the cells together with nicotine. Chronic treatment for 4 days with 100 m M ethanol significantly decreased the mRNA level for the α3 nAChR subunit (−39%), while the mRNA levels for the α7 (+30%) and α4 (+22%) subunits were significantly increased. Chronic ethanol treatment did not affect the mRNA levels for the β2 nAChR subunit. Changes in the levels of nAChR protein and mRNA may have adaptive significance and be involved in the development of dependence, tolerance, and addiction to chronic ethanol and nicotine exposure. They also may be targets for therapeutic strategies in the treatment of ethanol and nicotine dependence.  相似文献   

3.
The α4-subunit gene (CHRNA4) of the neuronal nicotinic acetylcholine receptor (nAChR) subunit family has recently been identified in two families as the gene responsible for autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), a rare monogenic idiopathic epilepsy. As a result of this finding, other subunits of the neuronal nAChR gene family are being considered as candidate genes for ADNFLE in families not linked to CHRNA4 and for other idiopathic epilepsies. α4-subunitsoften assemble together with β2-subunits (gene symbol CHRNB2) to build heteromeric nAChRs. The gene encoding another abundant AChR subunit, the α3-subunit gene (CHRNA3), is present with those encoding two other subunits, CHRNB4 and CHRNA5, in a gene cluster whose functional role is still unclear. Here we provide the information on the genomic structures of both the CHRNB2 and the CHRNA3 genes that is necessary for comprehensive mutational analyses, and we refine the genomic assignment of CHRNB2 on chromosome 1. Received: 5 August 1998 / Accepted: 13 October 1998  相似文献   

4.
The NR2B subunit of N‐methyl d ‐aspartate glutamate receptors influences pharmacological properties and confers greater sensitivity to the modulatory effects of ethanol. This study examined behavioral responses to acute ethanol in a conditional knockout mouse model that allowed for a delayed genetic deletion of the NR2B subunit to avoid mouse lethality. Mice lacking the NR2B gene (knockout) were produced by mating NR2B[f/f] mice with CAMKIIa‐driven tTA transgenic mice and the tetO‐CRE transgenic mice. Adult male and female offspring representing each of the resultant genotypes (knockout, CAM, CRE and wildtype mice) were tested for open‐field locomotor activity following acute low‐ and high‐dose ethanol challenge as well as loss of righting reflex. Findings indicate that male and female mice lacking the NR2B subunit exhibited greater overall activity in comparison to other genotypes during the baseline locomotor activity test. NR2B knockout mice exhibited an exaggerated stimulant response to 1.5 g/kg (i.p.) and an exaggerated depressant response to 3.0 g/kg (i.p.) ethanol challenge. In addition, NR2B knockout mice slept longer following a high dose of ethanol (4.0 g/kg, i.p.). To evaluate pharmacokinetics, clearance rates of ethanol (1.5, 4.0 g/kg, i.p.) were measured and showed that female NR2B knockouts had a faster rate of metabolism only at the higher ethanol dose. Western blot analyses confirmed significant reduction in NR2B expression in the forebrain of knockout mice. Collectively, these data indicate that the NR2B subunit of the N‐methyl d ‐aspartate glutamate receptor is involved in regulating low‐dose stimulant effects of ethanol and the depressant/hypnotic effects of ethanol.  相似文献   

5.
Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.  相似文献   

6.
Serotonin (5-HT) receptors are classified into seven groups (5-HT1–7), comprising at least 14 structurally and pharmacologically distinct receptor subtypes. Pharmacological antagonism of ionotropic 5-HT3 receptors has been shown to modulate both behavioral and neurochemical aspects of the induction of sensitization to cocaine. It is not known, however, if specific molecular subunits of the 5-HT3 receptor influence the development of cocaine sensitization. To address this question, we studied the effects of acute and chronic intermittent cocaine administration in mice with a targeted deletion of the gene for the 5-HT3A-receptor subunit (5-HT3A−/−). 5-HT3A (−/−) mice showed blunted induction of cocaine-induced locomotor sensitization as compared with wild-type littermate controls. 5-HT3A (−/−) mice did not differ from wild-type littermate controls on measures of basal motor activity or response to acute cocaine treatment. Enhanced locomotor response to saline injection following cocaine sensitization was observed equally in 5-HT3A (−/−) and wild-type mice suggesting similar conditioned effects associated with chronic cocaine treatment. These data show a role for the 5-HT3A-receptor subunit in the induction of behavioral sensitization to cocaine and suggest that the 5-HT3A molecular subunit modulates neurobehavioral adaptations to cocaine, which may underlie aspects of addiction.  相似文献   

7.
Mortality from tobacco smoking remains the leading cause of preventable death in the world, yet current cessation therapies are only modestly successful, suggesting new molecular targets are needed. Genetic analysis of gene expression and behavior identified Chrna7 as potentially modulating nicotine place conditioning in the BXD panel of inbred mice. We used gene targeting and pharmacological tools to confirm the role of Chrna7 in nicotine conditioned place preference (CPP). To identify molecular events downstream of Chrna7 that may modulate nicotine preference, we performed microarray analysis of α7 knock‐out (KO) and wild‐type (WT) nucleus accumbens (NAc) tissue, followed by confirmation with quantitative polymerase chain reaction (PCR) and immunoblotting. In the BXD panel, we found a putative cis expression quantitative trait loci (eQTL) for Chrna7 in NAc that correlated inversely to nicotine CPP. We observed that gain‐of‐function α7 mice did not display nicotine preference at any dose tested, whereas conversely, α7 KO mice demonstrated nicotine place preference at a dose below that routinely required to produce preference. In B6 mice, the α7 nicotinic acetylcholine receptor (nAChR)‐selective agonist, PHA‐543613, dose‐dependently blocked nicotine CPP, which was restored using the α7 nAChR‐selective antagonist, methyllycaconitine citrate (MLA). Our genomic studies implicated a messenger RNA (mRNA) co‐expression network regulated by Chrna7 in NAc. Mice lacking Chrna7 demonstrate increased insulin signaling in the NAc, which may modulate nicotine place preference. Our studies provide novel targets for future work on development of more effective therapeutic approaches to counteract the rewarding properties of nicotine for smoking cessation .  相似文献   

8.
Inbred mouse strains display significant differences in their levels of brain alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) expression, as measured by binding of the alpha7-selective antagonist alpha-bungarotoxin. Variations in alpha-bungarotoxin binding have been shown to correlate with an animal's sensitivity to nicotine-induced seizures and sensory gating. In two inbred mouse strains, C3H/2Ibg (C3H) and DBA/2Ibg (DBA/2), the inter-strain binding differences are linked to a restriction length polymorphism in the alpha7 nAChR gene, Chrna7. Despite this finding, the molecular mechanism(s) through which genetic variability in Chrna7 may contribute to alpha7 nAChR expression differences remains unknown. However, studies of the human alpha7 nAChR gene (CHRNA7) previously have demonstrated that CHRNA7 promoter polymorphisms are associated with differences in promoter activity as well as differences in sensory processing. In the present study, a 947-base pair region of the Chrna7 promoter was cloned from both the C3H and DBA/2 inbred mouse strains in an attempt to identify polymorphisms that may underlie alpha7 nAChR differential expression. Sequence analysis of these fragments identified 14 single nucleotide polymorphisms (SNPs). A combination of two of these SNPs affects promoter activity in an in vitro luciferase reporter assay. These results suggest a mechanism through which the Chrna7 promoter genotype may influence interstrain variations in alpha7 nAChR expression.  相似文献   

9.
Abstract: Nicotinic acetylcholine (ACh) receptors (nAChRs) are important excitatory neurotransmitter receptors in the insect CNS. We have isolated and characterized the gene and the cDNA of a new nAChR subunit from Drosophila . The predicted mature nAChR protein consists of 773 amino acid residues and has the structural features of an ACh-binding α subunit. It was therefore named Dα3, for D rosophila α -subunit 3 . The dα3 gene maps to the X chromosome at position 7E. The properties of the Dα3 protein were assessed by expression in Xenopus oocytes. Dα3 did not form functional receptors on its own or in combination with any Drosophila β-type nAChR subunit. Nondesensitizing ACh-evoked inward currents were observed when Dα3 was coexpressed with the chick β2 subunit. Half-maximal responses were at ∼0.15 µ M ACh with a Hill coefficient of ∼1.5. The snake venom component α-bungarotoxin (100 n M ) efficiently but reversibly blocked Dα3/β2 receptors, suggesting that Dα3 may be a component of one of the previously described two classes of toxin binding sites in the Drosophila CNS.  相似文献   

10.

Introduction

Collagen-induced arthritis (CIA) in mice is a commonly used experimental model for rheumatoid arthritis (RA). We have previously identified a significant quantitative trait locus denoted Cia40 on chromosome 11 that affects CIA in older female mice. This locus colocalizes with another locus, denoted Pregq2, known to affect reproductive success. The present study was performed to evaluate the role of the Cia40 locus in congenic B10.Q mice and to identify possible polymorphic candidate genes, which may also be relevant in the context of RA.

Methods

Congenic B10.Q mice carrying an NFR/N fragment surrounding the Cia40/Pregq2 loci were created by 10 generations of backcrossing (N10). The congenic mice were investigated in the CIA model, and the incidence and severity of arthritis as well as the serum levels of anti-collagen II (CII) antibodies were recorded.

Results

Significant effects on onset, incidence, severity, and anti-CII antibody titers were observed in female mice carrying a heterozygous congenic Cia40/Pregq2 fragment of NFR/N origin, containing one or more polymorphic genes. Congenic male mice did not show increased incidence of CIA, but males carrying a heterozygous fragment showed a significant increase in severity in comparison with wildtype B10.Q males (littermates).

Conclusion

The Cia40/Pregq2 locus at chromosome 11 contains one or more polymorphic genes of NFR/N origin that significantly influence both incidence and severity of CIA in heterozygous congenic mice of the B10.Q strain. The major polymorphic candidate genes for the effects on CIA are Cd79b, Abca8a, and Map2k6. The congenic fragment also contains polymorphic genes that affect reproductive behavior and reproductive success. The Sox9 gene, known to influence sex reversal, is a candidate gene for the reproductive phenotype.  相似文献   

11.
12.
A role of nicotinic acetylcholine receptors (nAChR) in the development of Parkinson’s disease (PD) has been investigated using two mouse models corresponding to the presymptomatic stage and the early symptomatic stage of PD. Quantitative radioligand analysis of nAChR in the striatum and substantia nigra (SN) was performed using the radioactive derivatives of epibatidine, α-conotoxin MII, and α-bungarotoxin. These are selective ligands for different nAChR subtypes. The number of ligand-binding sites changed differently depending on their location in the brain, the stage of the disease and the receptor subtype. In the striatum epibatidine binding decreased by 66% and 70% at the presymptomatic and early symptomatic stages, respectively, while in SN epibatidine binding demonstrated a significant (160%) increase at the presymptomatic stage. The α-conotoxin MII binding to striatal dopaminergic axonal terminals at the presymptomatic stage decreased by 20% and at the symptomatic stage it demonstrated a further decrease. Striatal α-bungarotoxin binding increased at the presymptomatic stage and decreased at the early symptomatic stage. In SN, the level of α-bungarotoxin binding decreased at the presymptomatic stage and remained constant at the symptomatic stage. A significant decrease in the expression of Chrna4 and Chrna6 genes encoding α4 and α6 nAChR subunits was observed in SN at the early symptomatic stage, while a 13-fold increase in expression of the Chrna7 gene encoding the α7 nAChR subunit was detected at the presymptomatic stage. The data obtained on the altered mRNA levels or functional cholinergic receptors suggest possible involvement of nAChR in compensatory mechanisms at early PD stages.  相似文献   

13.
14.
Abstract: A full-length cDNA encoding the β subunit of the recently described avermectin receptor was amplified from Caenorhabditis elegans mRNA. When this cDNA was injected into Xenopus oocytes a dose-dependent response to glycine was observed, together with a smaller response to 1 m M GABA. The EC50 of the glycine response was similar to that described previously for glutamate (0.38 m M ). Hybridisation of the cDNA to polytene filters identified three yeast artificial chromosome clones that gave a positive signal, Y37B3, Y38E5, and Y24C9, all of which are mapped to chromosome 1. Hybridisation to a series of cosmid clones covering this area further mapped the gene encoding this subunit to the region −2,818 to −2,824.  相似文献   

15.
The role of acetylcholine and specific nicotinic receptors in sensorimotor gating and higher cognitive function has been controversial. Here, we used a commercially available mouse with a null mutation in the Chrna7tm1Bay gene [α7‐nicotinic acetylcholine receptor (nAChR) knockout (KO) mouse] in order to assess the role of the α7‐nAChR in sensorimotor gating and spatial learning. We examined prepulse inhibition (PPI) of startle and nicotine‐induced enhancement of PPI. We also tested short‐ and long‐term habituation of the startle response as well as of locomotor behaviour in order to differentiate the role of this receptor in the habituation of evoked behaviour (startle) vs. motivated behaviour (locomotion). To address higher cognition, mice were also tested in a spatial learning task. Our results showed a mild but consistent PPI deficit in α7‐nAChR KO mice. Furthermore, they did not show nicotine‐induced enhancement of startle or PPI. Short‐ and long‐term habituation was normal in KO mice for both types of behaviours, evoked or motivated, and they also showed normal learning and memory in the Barnes maze. Thorough analysis of the behavioural data indicated a slightly higher degree of anxiety in α7‐nAChR KO mice; however, this could only be partially confirmed in an elevated plus maze test. In summary, our data suggest that α7‐nAChRs play a minor role in PPI, but seem to mediate nicotine‐induced PPI enhancement. We found no evidence to suggest that they are important for habituation or spatial learning .  相似文献   

16.
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their mammalian counterparts. Thus, Drosophila melanogaster and Anopheles gambiae each possess 10 nAChR genes while Apis mellifera has 11. Although these are among the smallest nAChR gene families known, receptor diversity can be considerably increased by alternative splicing and mRNA A-to-I editing, thereby generating species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that act on particular pests while sparing beneficial insects. Electrophysiological studies on cultured Drosophila cholinergic neurons show partial agonist actions of the neonicotinoid imidacloprid and super-agonist actions of another neonicotinoid, clothianidin, on native nAChRs. Recombinant hybrid heteromeric nAChRs comprising Drosophila Dα2 and a vertebrate β2 subunit have been instructive in mimicking such actions of imidacloprid and clothianidin. Unitary conductance measurements on native nAChRs indicate that more frequent openings of the largest conductance state may offer an explanation for the superagonist actions of clothianidin.  相似文献   

17.
A recessive Salmonella Typhimurium susceptibility locus (immunity to Typhimurium (Ity3) was reported previously on distal mouse chromosome 1 using a cross between C57BL/6J and wild-derived MOLF/Ei mice. This quantitative trait locus is located in a genomic region spanning 84 Mb, rich in candidate genes for which a role in host resistance to Salmonella infection is either known or can be envisioned. In this study, we report the evaluation of neutrophil cytosolic factor 2 (Ncf2) as a candidate Salmonella susceptibility gene for Ity3. Ncf2 encodes p67phox, a subunit of the multiprotein enzyme complex NADPH oxidase, known to be responsible for the generation of superoxides. Congenic mice carrying the Ity3 region from MOLF/Ei, B6.MOLF-Ity/Ity3 were more susceptible to infection compared with control mice heterozygous at Ity3, B6.MOLF-Ity/Ity3(MOLF/B6), confirming the existence of a recessive Salmonella susceptibility locus on distal chromosome 1. Spleen Ncf2 expression levels were lower in infected congenic mice homozygous for the MOLF/Ei allele at Ity3 compared with mice heterozygous at Ity3. C57BL/6J and MOLF/Ei Ncf2 sequence comparisons revealed one nonconservative amino acid change (R394Q) in the functional and highly conserved Phox and Bem1 domain of the protein. Functional analysis revealed that the MOLF/Ei allele had reduced PMA- and Salmonella-induced superoxide induction as compared with their wild-type counterparts ex vivo. The R394Q substitution seems to occur on an amino acid involved in electrostatic interactions with p40phox, crucial in its activation. Moreover, a human mutation in the corresponding R395W, resulting in chronic granulatomous disease, is known to lead to reduced superoxide levels. These results support the candidacy of Ncf2 as the gene underlying Ity3.  相似文献   

18.
19.
Transgenic and gene targeting studies of hair cell function in mouse inner ear   总被引:13,自引:0,他引:13  
Despite the rapid discovery of a large number of genes in sensory hair cells of the inner ear, the functional roles of these genes in hair cells remain largely undetermined. Recent advances in transgenic and gene targeting technologies in mice have offered unprecedented opportunities to genetically manipulate the expression of these genes and to study their functional roles in hair cells in vivo. Transgenic analyses have revealed the presence of hair-cell-specific promoters in the genes encoding Math1, myosin VIIa, Pou4f3, and the alpha9 subunit of the acetylcholine receptor (alpha9 AChR). Targeted inactivation using embryonic stem cell technology and transgenic expression studies have revealed the roles of several genes involved in hair cell lineage (Math1), differentiation (Pou4f3), mechanotransduction (Myo1c, and Myo7a), electromotility (Prestin), and efferent modulation (Chrna9, encoding alpha9 AChR). Although many of these genes also play roles in other tissues, inactivation of these genes in hair cells alone will soon be possible by using the Cre-loxP system. Also imminent is the development of genetic methods to inactivate genes specifically in mouse hair cells at a desired time, by using inducible systems established in other types of neurons. Combining these types of manipulation of gene expression will enable hearing researchers to elucidate some of the fundamental and unique features of hair cell function such as mechanotransduction, frequency tuning, active mechanical amplification, and efferent modulation.  相似文献   

20.
Neuroanatomical research suggests that interactions between dopamine and glutamate within the mesolimbic dopamine system are involved in both drug‐induced locomotor stimulation and addiction. Therefore, genetically determined differences in the locomotor responses to ethanol and cocaine may be related to differences in the effects of these drugs on this system. To test this, we measured drug‐induced changes in dopamine and glutamate within the nucleus accumbens (NAcc), a major target of mesolimbic dopamine neurons, using in vivo microdialysis in selectively bred FAST and SLOW mouse lines, which were bred for extreme sensitivity (FAST) and insensitivity (SLOW) to the locomotor stimulant effects of ethanol. These mice also show a genetically correlated difference in stimulant response to cocaine (FAST > SLOW). Single injections of ethanol (2 g/kg) or cocaine (40 mg/kg) resulted in larger increases in dopamine within the NAcc in FAST compared with SLOW mice. There was no effect of either drug on NAcc glutamate levels. These experiments indicate that response of the mesolimbic dopamine system is genetically correlated with sensitivity to ethanol‐ and cocaine‐induced locomotion. Because increased sensitivity to the stimulating effects of ethanol appears to be associated with greater risk for alcohol abuse, genetically determined differences in the mesolimbic dopamine response to ethanol may represent a critical underlying mechanism for increased genetic risk for alcoholism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号