首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
4.
Glomerular podocytes are highly differentiated epithelial cells that are key components of the kidney filtration units. Podocyte damage or loss is the hallmark of nephritic diseases characterized by severe proteinuria. Recent studies implicate that hormones including glucocorticoids (ligand for glucocorticoid receptor) and vitamin D3 (ligand for vitamin D receptor) protect or promote repair of podocytes from injury. In order to elucidate the mechanisms underlying hormone-mediated podocyte-protecting activity from injury, we carried out microarray gene expression studies to identify the target genes and corresponding pathways in response to these hormones during podocyte differentiation. We used immortalized human cultured podocytes (HPCs) as a model system and carried out in vitro differentiation assays followed by dexamethasone (Dex) or vitamin D3 (VD3) treatment. Upon the induction of differentiation, multiple functional categories including cell cycle, organelle dynamics, mitochondrion, apoptosis and cytoskeleton organization were among the most significantly affected. Interestingly, while Dex and VD3 are capable of protecting podocytes from injury, they only share limited target genes and affected pathways. Compared to VD3 treatment, Dex had a broader and greater impact on gene expression profiles. In-depth analyses of Dex altered genes indicate that Dex crosstalks with a broad spectrum of signaling pathways, of which inflammatory responses, cell migration, angiogenesis, NF-κB and TGFβ pathways are predominantly altered. Together, our study provides new information and identifies several new avenues for future investigation of hormone signaling in podocytes.  相似文献   

5.
6.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays an integral role in calcium homeostasis in higher organisms through its actions in the intestine, kidney, and skeleton. Interestingly, although several intestinal genes are known to play a contributory role in calcium homeostasis, the entire caste of key components remains to be identified. To examine this issue, Cyp27b1 null mice on either a normal or a high calcium/phosphate-containing rescue diet were treated with vehicle or 1,25(OH)2D3 and evaluated 6 h later. RNA samples from the duodena were then subjected to RNA sequence analysis, and the data were analyzed bioinformatically. 1,25(OH)2D3 altered expression of large collections of genes in animals under either dietary condition. 45 genes were found common to both 1,25(OH)2D3-treated groups and were composed of genes previously linked to intestinal calcium uptake, including S100g, Trpv6, Atp2b1, and Cldn2 as well as others. An additional distinct network of 56 genes was regulated exclusively by diet. We then conducted a ChIP sequence analysis of binding sites for the vitamin D receptor (VDR) across the proximal intestine in vitamin D-sufficient normal mice treated with vehicle or 1,25(OH)2D3. The residual VDR cistrome was composed of 4617 sites, which was increased almost 4-fold following hormone treatment. Interestingly, the majority of the genes regulated by 1,25(OH)2D3 in each diet group as well as those found in common in both groups contained frequent VDR sites that likely regulated their expression. This study revealed a global network of genes in the intestine that both represent direct targets of vitamin D action in mice and are involved in calcium absorption.  相似文献   

7.
8.
目的:筛选和鉴定同源盒基因A10编码蛋白(HOXA10)的靶调节基因。方法:以人子宫内膜细胞系AN3CA为实验对象,采用染色质免疫沉淀方法筛选HOXA10靶基因;采用平端克隆方法构建HOXA10靶基因库;采用DNA序列分析结合生物信息学方法鉴定HOXA10靶基因。结果:共获得含有HOXA10结合片段的克隆197个,选取插入片段大于100bp的质粒67个进行DNA序列分析,其中含有HOXA10结合序列TTAT的基因16个。结论:初步筛选出16个HOXA10候选靶基因,为进一步研究HOXA10的基因调节机理提供了新的思路。  相似文献   

9.
10.
11.
12.
13.
14.
The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), whose expression in bone cells is regulated positively by 1,25(OH)2D3, retinoic acid, and parathyroid hormone through both intergenic and intronic enhancers. In this report, we used ChIP-sequencing analysis to confirm the presence of these Vdr gene enhancers in mesenchyme-derived bone cells and to describe the epigenetic histone landscape that spans the Vdr locus. Using bacterial artificial chromosome-minigene stable cell lines, CRISPR/Cas9 enhancer-deleted daughter cell lines, transient transfection/mutagenesis analyses, and transgenic mice, we confirmed the functionality of these bone cell enhancers in vivo as well as in vitro. We also identified VDR-binding sites across the Vdr gene locus in kidney and intestine using ChIP-sequencing analysis, revealing that only one of the bone cell-type enhancers bound VDR in kidney tissue, and none were occupied by the VDR in the intestine, consistent with weak or absent regulation by the 1,25(OH)2D3 hormone in these tissues, respectively. However, a number of additional sites of VDR binding unique to either kidney or intestine were present further upstream of the Vdr gene, suggesting the potential for alternative regulatory loci. Importantly, virtually all of these regions retained histone signatures consistent with those of enhancers and exhibited unique DNase I hypersensitivity profiles that reflected the potential for chromatin access. These studies define mechanisms associated with hormonal regulation of the Vdr and hint at the differential nature of VDR binding activity at the Vdr gene in different primary target tissues in vivo.  相似文献   

15.

Introduction

Treatment failure in acute myeloid leukemia is probably caused by the presence of leukemia initiating cells, also referred to as leukemic stem cells, at diagnosis and their persistence after therapy. Specific identification of leukemia stem cells and their discrimination from normal hematopoietic stem cells would greatly contribute to risk stratification and could predict possible relapses.

Results

For identification of leukemic stem cells, we developed flow cytometric methods using leukemic stem cell associated markers and newly-defined (light scatter) aberrancies. The nature of the putative leukemic stem cells and normal hematopoietic stem cells, present in the same patient''s bone marrow, was demonstrated in eight patients by the presence or absence of molecular aberrancies and/or leukemic engraftment in NOD-SCID IL-2Rγ-/- mice. At diagnosis (n = 88), the frequency of the thus defined neoplastic part of CD34+CD38- putative stem cell compartment had a strong prognostic impact, while the neoplastic parts of the CD34+CD38+ and CD34- putative stem cell compartments had no prognostic impact at all. After different courses of therapy, higher percentages of neoplastic CD34+CD38- cells in complete remission strongly correlated with shorter patient survival (n = 91). Moreover, combining neoplastic CD34+CD38- frequencies with frequencies of minimal residual disease cells (n = 91), which reflect the total neoplastic burden, revealed four patient groups with different survival.

Conclusion and Perspective

Discrimination between putative leukemia stem cells and normal hematopoietic stem cells in this large-scale study allowed to demonstrate the clinical importance of putative CD34+CD38- leukemia stem cells in AML. Moreover, it offers new opportunities for the development of therapies directed against leukemia stem cells, that would spare normal hematopoietic stem cells, and, moreover, enables in vivo and ex vivo screening for potential efficacy and toxicity of new therapies.  相似文献   

16.
17.
《Endocrine practice》2015,21(3):221-225
ObjectiveVitamin D deficiency is related to increased risks for a number of diseases. To date, at least 3 candidate genes, vitamin D binding protein (VDBP) gene (GC), 25-hydroxylase (CYP2R1), and 7-dehydrocholes-terol reductase/NAD synthetase 1 (DHCR7/NADSYN1), have been associated with serum 25-hydroxyvitamin D (25[OH]D) levels, but their influences on the prevalence of vitamin D deficiency in relation to other known risk factors have not been clearly defined.MethodsThe study assessed 4,476 individuals aged 14 to 93 years from the Thailand 4th National Health Examination Survey (2008-2009) and the Electricity Generating Authority of Thailand (EGAT) (2008) cohorts. The GC rs2282679 polymorphism on chromosome 4q12-q13 was genotyped by real-time polymerase chain reaction (PCR). Serum 25(OH)D was measured by liquid chromatography/tandem mass spectrometry. Vitamin D deficiency was defined as a 25(OH)D concentration < 20 ng/mL.ResultsData were expressed as mean ± SD. There were 2,747 (61.4%) males and 1,729 (38.6%) females in the study, with an average body mass index (BMI) of 23.7 ± 4.2 kg/m2 and a mean total 25(OH)D of 28.9 ± 9.0 ng/mL. Serum 25(OH)D levels decreased progressively with the presence of the C allele. Using multiple logistic regression analysis, vitamin D deficiency was significantly associated with the GC rs2282679 genotype (odds ratio [OR] per C allele 1.80, 95% confidence interval CI 1.57-2.01), independent of established risk factors for vitamin D deficiency including age, sex, and BMI.ConclusionA specific GC gene polymorphism is associated with lower 25(OH)D levels independent of age, sex, and adiposity in Thai subjects. (Endocr Pract. 2015;21:221-225)  相似文献   

18.
19.
20.
The first morphological change after neuronal differentiation is the microtubule-dependent initiation of thin cell protrusions called neurites. Here we performed a siRNA-based morphometric screen in P19 stem cells to evaluate the role of 408 microtubule-regulating genes during this early neuromorphogenesis step. This screen uncovered several novel regulatory factors, including specific complex subunits of the microtubule motor dynein involved in neurite initiation and a novel role for the microtubule end-binding protein EB2 in attenuation of neurite outgrowth. Epistasis analysis suggests that competition between EB1 and EB2 regulates neurite length, which links its expression to neurite outgrowth. We propose a model that explains how microtubule regulators can mediate cellular morphogenesis during the early steps of neuronal development by controlling microtubule stabilization and organizing dynein-generated forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号