首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freeze fracture techniques have been used to study the apical membrane of cells of the luminal epithelium of the rat uterus under various hormonal regimes. In the ovariectomized but otherwise untreated rat, intramembranous particles (IMPs) occur at a density of 1395±122 per μm2; they appeared spherical and uniformly distributed. After 3 days treatment with estrogen, no change in appearance or density was found, but 3 days of progesterone treatment produced a significant increase in IMP density to 1622±104. Treatment with progesterone, with an additional dose of estrogen on day 3, is known to produce an epithelium receptive to the implanting blastocyst. In these conditions, the IMP density rose to 3818±337; rod-shaped particles and aggregations of IMPs were seen, and some particle arrays resembling gap junctions, in addition to the isolated spherical particles.  相似文献   

2.
The microvillar and lumenal plasma membrane P-face of Ascaris intestinal cells is shown to be covered by relatively large (13 nm) particles at a fairly high density (1000/μm2), while the E-face has virtually none. The P-face of the lateral cell membranes, those separating the cells, have fewer and smaller (8 nm) particles. The intestinal cells are also shown to be connected by an apical complex of smooth septate and tricellular junctions similar to those found between some insect midgut cells. A periodic layer of tannic acid staining material is found on the cytoplasmic sides of the smooth septate junction, and when the intercellular space is filled with lanthanum, smoothly curved, 10 nm wide septal walls can be seen. Below the belt of septate junctions are a large number of gap junctions. These have closely packed arrays of particles on the P-face with some particle aggregates adhering to the closely packed pit arrays on the E-face.  相似文献   

3.
Retractor muscle cells of the optic tentacle of Limax sp. occur as a network beneath the epithelium. The cells are spindle-shaped, irregularly cross-striated, and they contain a large number of subsarcolemmal caveolae. Freeze-fracture images of the sarcoplasmic reticulum, caveolae and sarcolemma demonstrate distinct particulate organizations. Membranes of the sarcoplasmic reticulum contain typical 7–9 nm PF-face particles. The caveolae membranes contain linear, sometimes rhombic arrays of 12–15 nm EF-face particles. An extensive area of the sarcolemmal surface is occupied by caveolar invaginations. Other areas of the sarcolemma contain linear arrays of 7–9 nm PF-face particles and a few rhombic ordered, 7–9 nm PF-face particles. The results of this study are discussed relative to previous studies on paniculate arrays in muscle membranes. It is concluded that these highly specialized sarcolemmal and caveolar paniculate organizations may, in some way, reflect the large surface area changes which occur in these muscle cells.  相似文献   

4.
Two-dimensional crystalline arrays of freeze-fracture particles are known to occur in abundant quantities in the plasma membrane of stationary state yeast cells. Although these crystalline arrays are seen only infrequently in cells during mid-exponential growth, we now observe that formation of crystalline arrays can be induced in such cells by a “metabolic starvation” protocol. Surprisingly, starvation-induced formation of crystalline patches can be prevented by inhibition of new protein synthesis during the starvation period. The size and quantity of crystalline arrays can be increased by removal of the cell wall prior to starvation. Induction of crystalline arrays in protoplasts has made it possible to investigate the surface morphology of the crystalline particles in isolated membranes as well as at the extracellular surface of intact protoplasts. The stability of isolated crystalline arrays to several detergents has been investigated and conditions have been found that result in improved morphological purity of the isolated crystalline patches.  相似文献   

5.
Freeze-fracture preparations of the esophagus and intestine of larvae and adults of the nematode Trichinella spiralis illustrate the distribution of intramembranous particles in membranes of a number of cell types, and several specializations were found. Esophageal glands are prominently linked by gap junctions, but gap junctions were not found between intestinal cells. Muscle cells of the esophagus have rectilinear arrays of particles, thought to be points of adherence of the muscles to the esophageal epithelium. Clusters of particles are associated with these arrays and particle-free areas (probably Z bodies) also occur. Intestinal cells have small particles in their microvilli, large particles in the cells' apical membranes, and intermediate size particles, similar to membranes of other cells, in the lateral and basal membranes. Apical smooth septate junctions and tricellular junctions occur between intestinal cells.  相似文献   

6.
Summary The caprine sinoatrial node (SAN) and atrioventricular node (AVN) were studied by freeze-fracture techniques, and their nexus or gap junction structure were compared with that of ordinary atrial and ventricular muscle cells. The general features of the nexus in both the SAN and AVN were essentially identical. Approximately two-thirds of the nexuses observed in the nodal cells consisted of typical macular arrangements of nexal particles, and the remaining third, of atypical configurations of either circular arrangements or linear arrays of particles in continuity with the macular nexuses. Such atypical nexuses were never observed in the ordinary adult myocardial cells. Quantitative analysis revealed that all of the nexuses in the nodal cells measured, were less than 0.1 m2, whereas the majority of the nexuses in ordinary myocardial cells (64% in the atrium and 76% in the ventricle) were larger than 0.1 m2. No significant differences in diameter and center-to-center distance of nexal particle were found between the nodal cells and ordinary myocardial cells.  相似文献   

7.
A nonoccluded virus was isolated from larvae of the army cutworm, Euxoa auxiliaris. Infected larvae became lethargic and shrunken, and death usually occurred 12–20 days after infection. The primary site of viral infection and replication appeared to be the nuclei of midgut epithelial cells; however, virus replication also occurred in cells of the tracheal matrix and in muscle. Nuclei in early stages of the infection contained large granular areas with the chromatin scattered near the nuclear membrane. These areas differentiated into viral particles that measured 24 nm and formed crystalline arrays, occasionally 10 μm long. Disruption of the nuclear membrane liberated these arrays of particles into the cytoplasm. Fluorescence microscopy studies indicated that the viral particles contained DNA. The crystalline arrays were Feulgen positive. The virus also infected larvae of the armyworm, Pseudaletia unipuncta, and corn carworm, Heliothis zea, in laboratory tests.  相似文献   

8.
Summary Cells from the ventricles of 7-day chick embryos were aggregated into spheroidal clusters by 48 hr of culture on a gyratory platform. All aggregates beat spontaneously and rhythmically. Microelectrode impalement of widely separated cells within aggregates indicated that they were coupled, as evidenced by a mean coupling ratio (V 2/V 1) of 0.81±0.09, and by simultaneity of intrinsic electrical activity (action potentials and subthreshold voltage fluctuation). In freeze-fracture preparations, the cell surfaces contained numerous small groups of intramembrane protein (IMP) particles, arranged in macular clusters, and linear and circular arrays. Using the criterion of 4 clustered IMP particles to define a minimal gap junction, 0.27% of the total P-face examined was devoted to gap junctional area. Within such clusters particles were packed at about 8200/m2; in nonjunctional regions, particles were scattered at a density of about 2000/m2. When exposed to cycloheximide (CHX: 50g/ml) for 24–48 hr, coupling ratio declined to 0.44. This decrease could be attributed largely to leakiness of the nonjunctional membrane. Aggregates continued to beat rhythmically and in a coordinated fashion even after 72 hr in inhibitor. However, between 3–21 hr in CHX gap junctional area declined to 0.10%, and all particle clusters disappeared from the P-faces of aggregates in CHX for 24 or 48 hr. Neither macular nor linear particle arrays were seen. We conclude that organized gap junctions are unnecessary for electrotonic coupling between embryonic heart cells. These findings support the idea that low-resistance cell-to-cell pathways may exist as isolated channels scattered throughout the area of closely apposed plasma membranes.  相似文献   

9.
In the central nervous system (CNS) of full-grown larvae of the blowfly Calliphora erythrocephala, the glial-ensheathed nerve cells are completely surrounded by a layer of perineurial cells which form a “blood-brain barrier” between the circulating haemolymph and the CNS. A variety of intercellular junctions, including gap and tight junctions, are found between adjacent perineurial cells and some also between apposing glial cells; these have been characterized by freeze-fracturing as well as by tracer studies and analysis of thin sections. They are found not to be present between such cells in the undifferentiated CNS in the newly hatched larvae, nor are the nerve cells encompassed by glial cells; ionic lanthanum can penetrate to the axonal surfaces at this stage. However, over the 5 days of larval growth and development the glial cells produce attentuated cytoplasmic processes that ensheath the nerve cells, and the perineurium is formed; junctional complexes are assembled and a larval blood-brain barrier is produced which excludes tracers. Freeze-fracture preparations suggest that the inverted gap junctions which develop have done so by migration of individual intramembranous EF particles to form, at first, linear arrays and small clusters and, ultimately, macular aggregations in the perineurium; these lie between the undulating rows of PF particles forming the septate junctions. These septate junctions are formed by the organization of arrays of PF particles into multiple rows. Extensive PF particles fusing into ridges with EF grooves to form perineurial “tight” junctions are also observed, seemingly in the process of development; entry of exogenous lanthanum followed by its exclusion parallels the completion of ridge formation. These ridges are simple linear arrays of particles which may be discontinuous, lying in parallel with one another and the surface. Clustered particle arrays as well as scattered short ridges on the axonal PF, however, appear to be present unchanged throughout larval life; their role may therefore be associated with neural membrane function although there are suggestions that some may form axo-glial junctions. This is the first report on the lateral migration of intramembranous particles as the mode of formation of gap junctions in the nervous system of an invertebrate.  相似文献   

10.
Engineered sequence-specific zinc finger nucleases (ZFNs) make the highly efficient modification of eukaryotic genomes possible. However, most current strategies for developing zinc finger nucleases with customized sequence specificities require the construction of numerous tandem arrays of zinc finger proteins (ZFPs), and subsequent largescale in vitro validation of their DNA binding affinities and specificities via bacterial selection. The labor and expertise required in this complex process limits the broad adoption of ZFN technology. An effective computational assisted design strategy will lower the complexity of the production of a pair of functional ZFNs. Here we used the FoldX force field to build 3D models of 420 ZFP-DNA complexes based on zinc finger arrays developed by the Zinc Finger Consortium using OPEN (oligomerized pool engineering). Using nonlinear and linear regression analysis, we found that the calculated protein-DNA binding energy in a modeled ZFP-DNA complex strongly correlates to the failure rate of the zinc finger array to show significant ZFN activity in human cells. In our models, less than 5% of the three-finger arrays with calculated protein-DNA binding energies lower than −13.132 kcal mol−1 fail to form active ZFNs in human cells. By contrast, for arrays with calculated protein-DNA binding energies higher than −5 kcal mol−1, as many as 40% lacked ZFN activity in human cells. Therefore, we suggest that the FoldX force field can be useful in reducing the failure rate and increasing efficiency in the design of ZFNs.  相似文献   

11.
Plasma membrane ghosts form when plant protoplasts attached to a substrate are lysed to leave a small patch of plasma membrane. We have identified several factors, including the use of a mildly acidic actin stabilization buffer and the inclusion of glutaraldehyde in the fixative, that allow immunofluorescent visualization of extensive cortical actin arrays retained on membrane ghosts made from tobacco (Nicotiana tabacum L.) suspension-cultured cells (line Bright Yellow 2). Normal microtubule arrays were also retained using these conditions. Membrane-associated actin is random; it exhibits only limited coalignment with the microtubules, and microtubule depolymerization in whole cells before wall digestion and ghost formation has little effect on actin retention. Actin and microtubules also exhibit different sensitivities to the pH and K+ and Ca2+ concentrations of the lysis buffer. There is, however, strong evidence for interactions between actin and the microtubules at or near the plasma membrane, because both ghosts and protoplasts prepared from taxol-pretreated cells have microtubules arranged in parallel arrays and an increased amount of actin coaligned with the microtubules. These experiments suggest that the organization of the cortical actin arrays may be dependent on the localization and organization of the microtubules.  相似文献   

12.
After Triton X-100 delipidation and subsequent Triton X-100 removal in a sucrose gradient the membrane protein spikes of Semliki Forest virus remained soluble in aqueous buffers. It was shown they were present as octameric complexes with a molecular weight of 95 · 104 and that they contain less than 4% lipid and detergent by weight. In electron microscopy after negative staining they appeared as “rosette”-shaped particles. Part of the protein could also be found associated in ordered paracrystalline arrays.  相似文献   

13.
Microfibrils are ubiquitous fibrillin-rich polymers that are thought to provide long-range elasticity to extracellular matrices, including the zonular filaments of mammalian eyes. X-ray diffraction of hydrated bovine zonular filaments demonstrated meridional diffraction peaks indexing on a fundamental axial periodicity (D) of ~56 nm. A Ca2+-induced reversible change in the intensities of the meridional Bragg peaks indicated that supramolecular rearrangements occurred in response to altered concentrations of free Ca2+. In the presence of Ca2+, the dominant diffracting subspecies were microfibrils aligned in an axial 0.33-D stagger. The removal of Ca2+ caused an enhanced regularity in molecular spacing of individual microfibrils, and the contribution from microfibrils not involved in staggered arrays became more dominant. Scanning transmission electron microscopy of isolated microfibrils revealed that Ca2+ removal or addition caused significant, reversible changes in microfibril mass distribution and periodicity. These results were consistent with evidence from x-ray diffraction. Simulated meridional x-ray diffraction profiles and analyses of isolated Ca2+-containing, staggered microfibrillar arrays were used to interpret the effects of Ca2+. These observations highlight the importance of Ca2+ to microfibrils and microfibrillar arrays in vivo.  相似文献   

14.
The structural phases in various mixtures of soybean phosphatidylethanolamine and egg phosphatidylcholine were studied by X-ray diffraction, freeze fracture electron microscopy, and 31P NMR. An intermediate state between bilayer and hexagonal structures was found at a composition of 10–25 mol% of phosphatidylcholine. The intermediate state consists of closely packed multilayers, together with arrays of lipidic intramembranous particles. The arrays of lipidic intramembranous particles, possibly membrane invaginations, give rise to an anisotropic 31P NMR spectrum commonly accredited to a hexagonal structure. A phase diagram of this mixed system is proposed. The compositional range at which the intermediate state exists coincides with the range of maximal mitochondrial ATPase activity when these lipids are used in reconstitution experiments.  相似文献   

15.
Gill epithelia from adult and juvenile Aplysia were examined by conventional thin section and freeze-fracture methods. Freeze-fracture replicas of adult gill epithelium revealed septate and gap junctions, which served as membrane markers for the epithelial cells. In these same cell membranes, non-junctional rhombic arrays of intramembranous particles were observed on prominent ridges on the membrane P fracture face of some epithelial cells. In thin sections of adult epithelium, nerve terminals were observed abutting the lateral plasma membranes near the basal lamina of some epithelial cells. Correlative areas of plasma membrane in freeze-fracture replicas showed a close association between rhombic particle arrays and abutting nerve terminals. In thin sections of juvenile Aplysia, nerve terminals abutting the epithelial cells were not recognizable, and rhombic arrays were not observed in freeze-fracture replicas. This suggested that a developmental association existed between the appearance of rhombic arrays in adult epithelia and their innervation. It is not known with certainty if, in invertebrates, rhombic arrays are an essential structural entity of all innervated cell membranes; however, in the cells thus far studied, there appears to be an associative condition. In the case of the gill epithelium of Aplysia, rhombic arrays are located in the same vicinity as the abutting nerve terminals. Similar arrays of intramembranous particles have been observed in myoneural postjunctional complexes of other invertebrates and have been interpreted to be the morphological expression of neurotransmitter receptors. An analogous explanation is put forth, namely that rhombic arrays may represent the structural correlates of neurotransmitter receptors and/or ionic channels in innervated membranes of invertebrates.  相似文献   

16.
Summary Ultrarapid cyrofixation procedures revealed the existence of ordered arrays of intramembrane particles on E fracture faces and corresponding ordered imprints on P faces in freeze-fractured plasma membrane of the green algaeChlamydobotrys stellata (Korschikoff). The structure of these arrays is very sensitive to cryofixation conditions and particularly to glutaraldehyde prefixation which leads to the formation of amorphous two-dimensional aggregates. The size of the individual ordered arrays and the ratio of ordered to total surface of the membrane increase with growth temperature from 15°C to 30°C with a corresponding decrease in cell generation time. Above 30°C the size of the individual ordered arrays decreases. At high, but sublethal temperature (above 37°C) the ordered arrays become smaller. In addition to the predominant two-dimensional oblique organization (a=12.0nm, b=12.6nm, =80°), square and tetragonal arrangements are also present. The cell wall is composed of many layers, one of which displays a zipper-like structure composed of periodic ridges 25 nm distant, sandwiched between two more or less fibrillar layers. The appearance and changes of the organization of ordered arrays are discussed in relation to their eventual physiological role during the life cycle of the cells and in particular to the formation of the cell wall and the median periodic leaflet.Dedicated to our late colleague and friend Dr.Yvonne Henry.  相似文献   

17.
Summary Using freeze-fracture techniques, we have investigated membrane specializations of the glia associated with the hypothalamo-neurohypophysial system of the rat. In the paraventricular (PVN) and supraoptic (SON) nuclei, astrocytes in areas of high neuronal density (i.e., magnocellular regions) display orthogonal arrays of 6–7 nm particles soley near gap junctions, while astrocytes in areas of lower neuronal density (i.e., parvocellular regions) contain additional arrays in membranes not displaying gap junctions. Arrays are especially numerous on astrocytic perivascular end-feet in both nuclei and in the laminations of the pial-glial limitans ventral to the SON. Ependymal cells near the PVN show arrays both on their lateral surfaces (displaying gap junctions) and on their apical surfaces (facing the CSF). Tight junctions are not noted on astrocytes or ependymal cells, but are noted on both the somas and myelin lamellae of oligodendroglia. Both of these latter membranes occasionally contain gap junctions as well; however, orthogonal arrays are never noted on oligodendroglia.The plasma membranes of pituicytes in the neurohypophysis display gap junctions, complex junctions, and tight junctions. Orthogonal arrays are noted near the first two of these, but not near the last. Arrays in the neural lobe appear most dense on membranes adjacent to subpial or perivascular spaces. Pituicyte membranes containing orthogonal arrays appear infrequently near the neural stalk, increasing towards the distal end of the neural lobe. The distribution of orthogonal arrays in this system, as well as in other systems in which they have been noted, suggests a polarization of membrane activity.  相似文献   

18.
Nonoccluded, icosahedral picornavirus-like (PVL) particles, 23 nm in diameter, forming paracrystalline arrays were seen in the cytoplasm of various cells in Cotylogaster occidentalis. Viral inclusions were visible in live specimens and in sections prepared for light and electron microscopy. All worms examined over a 2-year period were found to be infected. Infections were naturally acquired and susceptibility was not associated with any particular developmental stages. Development of viral inclusions involved an increase in the inclusion volume, progressive accumulation and condensation of materials into the interior of the inclusions, and formation of multilamellar membrane networks. Virus particles were observed in the stroma of the inclusions in association with multilamellar spherical bodies. Mature PVL particles aggregated into polygonally shaped paracrystalline arrays. When such arrays occurred in the surface tegument, local disruption of the tegumentary membrane may liberate these particles into the environment. PVL particle production did not exhaust glycogen content of infected cells and did not appear to affect short-term survival of the parasite outside the molluscan host.  相似文献   

19.
We have previously shown that DNA circles containing telomeric repeats and a marker gene can promote the recombinational elongation of telomeres in Kluyveromyces lactis by a mechanism proposed to involve rolling-circle DNA synthesis. Wild-type cells acquire a long tandem array at a single telomere, while telomerase deletion (ter1-Δ) cells, acquire an array and also spread it to multiple telomeres. In this study, we further examine the factors that affect the formation and spread of telomeric tandem arrays. We show that a telomerase+ strain with short telomeres and high levels of subtelomeric gene conversion can efficiently form and spread arrays, while a telomere fusion mutant is not efficient at either process. This indicates that an elevated level of gene conversion near telomeres is required for spreading but that growth senescence and a tendency to elongate telomeres in the absence of exogenously added circles are not. Surprisingly, telomeric repeats are frequently deleted from a transforming URA3-telomere circle at or prior to the time of array formation by a mechanism dependent upon the presence of subtelomeric DNA in the circle. We further show that in a ter1-Δ strain, long tandem arrays can arise from telomeres initially containing a single-copy insert of the URA3-telomere sequence. However, the reduced rate of array formation in such strains suggests that single-copy inserts are not typical intermediates in arrays formed from URA3-telomere circles. Using heteroduplex circles, we have demonstrated that either strand of a URA3-telomere circle can be utilized to form telomeric tandem arrays. Consistent with this, we demonstrate that 100-nucleotide single-stranded telomeric circles of either strand can promote recombinational telomere elongation.  相似文献   

20.
The freeze-fracture technique has been used to characterize the junctional devices involved in the electrical coupling of Ambystoma cardiac tissue. These cells are connected by junctions formed by either linear or circular arrays of particles. Such structures can be interpreted as a special type of gap junction. Gap junctions have also been investigated during the growth and differentiation of two amphibians, Rana and Xenopus. In both genera the earliest stage of junctional assembly is characterized by linear rows of particles. Later, a gradual transformation of these linear rows into circles was found. Finally, in the fully formed gap junctions, these circles appeared to join together into clusters. In summary, in the adult amphibian myocardial cells, three different types of gap junctions can be described. The first type, which has been observed in all embryonic stages and in adults in all three genera, consists of linear or circular arrays of particles: this is the only type of gap junction seen at any age in Xenopus. The second type, consisting of a variable number of anastomosing circles forming regular networks, is never observed in embryonic cells. It is typical of the adult frog heart and may also be seen in Ambystoma. The third type is characteristic only of adult Ambystoma heart and consists of geometrically packed particles identifiable with classic communicating macula. The fact that only the first class of structure is observed in Xenopus heart strongly supports the conclusion that such linear arrays of intramembranous particles really represent true functional electrical junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号