首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AD (Alzheimer's disease) is an age-associated neurodegenerative disorder where the accumulation of neurotoxic Aβ (amyloid β-peptide) in senile plaques is a typical feature. Recent studies point out a relationship between Aβ neurotoxicity and Ca2+ dyshomoeostasis, but the molecular mechanisms involved are still under discussion. The PMCAs (plasma membrane Ca2+-ATPases) are a multi-isoform family of proteins highly expressed in brain that is implicated in the maintenance of low intraneural Ca2+ concentration. Therefore the malfunction of this pump may also be responsible for Ca2+ homoeostasis failure in AD. We have found that the Ca2+-dependence of PMCA activity is affected in human brains diagnosed with AD, being related to the enrichment of Aβ. The peptide produces an inhibitory effect on the activity of PMCA which is isoform-specific, with the greatest inhibition of PMCA4. Besides, cholesterol blocked the inhibitory effect of Aβ, which is consistent with the lack of any Aβ effect on PMCA4 found in cholesterol-enriched lipid rafts isolated from pig brain. These observations suggest that PMCAs are a functional component of the machinery that leads to Ca2+ dysregulation in AD and propose cholesterol enrichment in rafts as a protector of the Aβ-mediated inhibition on PMCA.  相似文献   

2.
Spatial and temporal alterations in intracellular calcium [Ca(2+)](i) play a pivotal role in a wide array of neuronal functions. Disruption in Ca(2+) homeostasis has been implicated in the decline in neuronal function in brain aging and in neurodegenerative disorders. The plasma membrane Ca(2+)-ATPase (PMCA) is a high affinity Ca(2+) transporter that plays a crucial role in the termination of [Ca(2+)](i) signals and in the maintenance of low [Ca(2+)](i) essential for signaling. Recent evidence indicates that PMCA is uniquely sensitive to its lipid environment and is stimulated by lipids with ordered acyl chains. Here we show that both PMCA and its activator calmodulin (CaM) are partitioned into liquid-ordered, cholesterol-rich plasma membrane microdomains or 'lipid rafts' in primary cultured neurons. Association of PMCA with rafts was demonstrated in preparations isolated by sucrose density gradient centrifugation and in intact neurons by confocal microscopy. Total raft-associated PMCA activity was much higher than the PMCA activity excluded from these microdomains. Depletion of cellular cholesterol dramatically inhibited the activity of the raft-associated PMCA with no effect on the activity of the non-raft pool. We propose that association of PMCA with rafts represents a novel mechanism for its regulation and, consequently, of Ca(2+) signaling in the central nervous system.  相似文献   

3.
The plasma membrane is a specialised multi-component structure with inter- and intracellular signalling functions. Ca2+ plays a crucial role in cellular physiology, and an ATP-driven plasma membrane calcium pump (PMCA) plays the greatest role in the maintenance of a low free Ca2+ concentration in the cytoplasm. The enzyme is coded by four separate genes (PMCA 1-4), and, due to alternative splicing, more than 20 variants can exist. PMCA 1 and 4 isoforms are present in almost all tissues, whereas PMCA 2 and 3 are found in more specialised cell types. The variants differ primarily in their regulatory regions, thus the modulation of calcium pump activity strongly depends on the isoform and the membrane composition. The unique function of PMCA isoforms was confirmed using the practical experimental models - a rat pheochromocytoma cell line, a human neuroblastoma cell line, or, more recently, knockout mice. In addition, based on the finding that PMCA could interact with several specific signaling proteins, it was concluded that its location in defined sites of the cell membrane could be a prerequisite for efficient intercellular communication.  相似文献   

4.
When stimulated by glucose, the pancreatic beta-cell displays large oscillations of intracellular free Ca2+ concentration ([Ca2+]i). To control [Ca2+]i, the beta-cell must be equipped with potent mechanisms for Ca2+ extrusion. We studied the expression of the plasma membrane Ca(2+)-ATPases (PMCA) in three insulin secreting preparations (a pure beta-cell preparation, RINm5F cells and pancreatic islet cells), using reverse-transcribed PCR, RNase protection assay and Western blotting. The four main isoforms, PMCA1, PMCA2, PMCA3 and PMCA4 were expressed in the three preparations. Six alternative splice mRNA variants, characterized at splice sites A, B and C were detected in the three preparations (rPMCA1xb, 2yb, 2wb, 3za, 3zc, 4xb), plus two additional variants in pancreatic islet cells (PMCA4za, 1xkb). The latter variant corresponded to a novel variant of rat PMCA1 gene lacking the exon coding for the 10th transmembrane segment, at splice site B. At the mRNA and protein level, five variants predominated (1xb, 2wb, 3za, 3zc, 4xb), whilst one additional isoform (4za), predominated at the protein level only. This provides the first evidence for the presence of PMCA2 and PMCA3 isoforms at the protein level in non-neuronal tissue. Hence, the pancreatic beta-cell is equipped with multiple PMCA isoforms with possible differential regulation, providing a full range of PMCAs for [Ca2+]i regulation.  相似文献   

5.
The four basic isoforms of the plasma membrane Ca2+ pump and the two C-terminally truncated spliced variants PMCA4CII(4a) and 3CII(3a) were transiently overexpressed in Chinese hamster ovary cells together with aequorin targeted to the cytosol, the endoplasmic reticulum, and the mitochondria. As PMCA3CII(3a) had not yet been cloned and studied, it was cloned for this study, partially purified, and characterized. At variance with the corresponding truncated variant of PMCA4, which had been studied previously, PMCA3CII(3a) had very high calmodulin affinity. All four basic pump variants influenced the homeostasis of Ca2+ in the native intracellular environment. The level of [Ca2+] in the endoplasmic reticulum and the height of the [Ca2+] transients generated in the cytosol and in the mitochondria by the emptying of the endoplasmic reticulum store by inositol 1,4,5-trisphosphate were all reduced by the overexpression of the pumps. The effects were much greater with the neuron-specific PMCA2 and PMCA3 than with the ubiquitously expressed isoforms 1 and 4. Unexpectedly, the truncated PMCA3 and PMCA4 were as effective as the full-length variants in influencing the homeostasis of Ca2+ in the cytosol and the organelles. In particular, PMCA4CII(4a) was as effective as PMCA4CI(4b), even if its affinity for calmodulin is much lower. The results indicate that the availability of calmodulin may not be critical for the modulation of PMCA pumps in vivo.  相似文献   

6.
The autoinhibition/activation of the PMCA (plasma membrane Ca2+-ATPase) involves conformational changes in the membrane region of the protein that affect the amount of lipids directly associated with the transmembrane domain. The lipid-protein-dependence of PMCA isoforms 2 and 4 expressed and obtained in purified form from Saccharomyces cerevisiae was investigated using the phosphatidylcholine analogue [125I]TID-PC/16 {l-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromemyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine}, which was incorporated into mixtures of dimyristoylphosphatidylcholine and the non-ionic detergent C12E10 [deca(ethylene glycol) dodecyl ether]. We found no differences between the recombinant PMCA4 and PMCA purified from erythrocytes (ePMCA). However, titration of the half-maximal activation by Ca2+/calmodulin of PMCA2 showed 30-fold higher affinity than PMCA4. PMCA2 exhibited a lower level of labelling in the autoinhibited conformation relative to PMCA4, indicating that the lower autoinhibition was correlated with a lower exposure to lipids in the autoinhibited state. Analysis of the lipid-protein stoichiometry showed that the lipid annulus of PMCA varies: (i) in accordance to the conformational state of the enzyme; and (ii) depending on the different isoforms of PMCA. PMCA2 during Ca2+ transport changes its conformation to a lesser extent than PMCA4, an isoform more sensitive to modulation by calmodulin and acidic phospholipids. This is the first demonstration of a dynamic behaviour of annular lipids and PMCA.  相似文献   

7.
In this work we demonstrate a differentiation-induced up-regulation of the expression of plasma membrane Ca2+ATPase (PMCA) isoforms being present in various gastric/colon cancer cell types. We found PMCA1b as the major isoform in non-differentiated cancer cell lines, whereas the expression level of PMCA4b was significantly lower. Cell differentiation initiated with short chain fatty acids (SCFAs) and trichostatin A, or spontaneous differentiation of post-confluent cell cultures resulted in a marked induction of PMCA4b expression, while only moderately increased PMCA1b levels. Up-regulation of PMCA4b expression was demonstrated both at the protein and mRNA levels, and closely correlated with the induction of established differentiation markers. In contrast, the expression level of the Na+/K+-ATPase or that of the sarco/endoplasmic reticulum Ca2+ATPase 2 protein did not change significantly under these conditions. In membrane vesicles obtained from SCFA-treated gastric/colon cancer cells a marked increase in the PMCA-dependent Ca2+ transport activity was observed, indicating a general increase of PMCA function during the differentiation of these cancer cells. Because various PMCA isoforms display distinct functional characteristics, we suggest that up-regulated PMCA expression, together with a major switch in PMCA isoform pattern may significantly contribute to the differentiation of gastric/colon cancer cells. The analysis of PMCA expression may provide a new diagnostic tool for monitoring the tumor phenotype.  相似文献   

8.
The inhibition by the regulatory domain and the interaction with calmodulin (CaM) vary among plasma membrane calcium pump (PMCA) isoforms. To explore these differences, the kinetics of CaM effects on PMCA4a were investigated and compared with those of PMCA4b. The maximal apparent rate constant for CaM activation of PMCA4a was almost twice that for PMCA4b, whereas the rates of activation for both isoforms showed similar dependence on Ca2+. The inactivation of PMCA4a by CaM removal was also faster than for PMCA4b, and Ca2+ showed a much smaller effect (2- versus 30-fold modification). The rate constants of the individual steps that determine the overall rates were obtained from stopped-flow experiments in which binding of TA-CaM was observed by changes in its fluorescence. TA-CaM binds to two conformations of PMCA4a, an "open" conformation with high activity, and a "closed" one with lower activity. Compared with PMCA4b (Penheiter, A. R., Bajzer, Z., Filoteo, A. G., Thorogate, R., T?r?k, K., and Caride, A. J. (2003) Biochemistry 41, 12115-12124), the model for PMCA4a predicts less inhibition in the closed form and a much faster equilibrium between the open and closed forms. Based on the available kinetic parameters, we determined the constants to fit the shape of a Ca2+ signal in PMCA4b-overexpressing Chinese hamster ovary cells. Using the constants for PMCA4a, and allowing small variations in parameters of other systems contributing to a Ca2+ signal, we then simulated the effect of PMCA4a on the shape of a Ca2+ signal in Chinese hamster ovary cells. The results reproduce the published data (Brini, M., Coletto, L., Pierobon, N., Kraev, N., Guerini, D., and Carafoli, E. (2003) J. Biol. Chem. 278, 24500-24508), and thereby demonstrate the importance of altered regulatory kinetics for the different functional properties of PMCA isoforms.  相似文献   

9.
Precise regulation of free intracellular Ca2+ concentrations [Ca2+]i is critical for normal neuronal function, and alterations in Ca2+ homeostasis are associated with brain aging and neurodegenerative diseases. One of the most important proteins controlling [Ca2+]i is the plasma membrane Ca2+‐ATPase (PMCA), the high‐affinity transporter that fine tunes the cytosolic nanomolar levels of Ca2+. We previously found that PMCA protein in synaptic plasma membranes (SPMs) is decreased with advancing age and the decrease in enzyme activity is much greater than that in protein levels. In this study, we isolated raft and non‐raft fractions from rat brain SPMs and used quantitative mass spectrometry to show that the specialized lipid microdomains in SPMs, the rafts, contain 60% of total PMCA, comprised all four isoforms. The raft PMCA pool had the highest specific activity and this decreased progressively with age. The reduction in PMCA protein could not account for the dramatic activity loss. Addition of excess calmodulin to the assay did not restore PMCA activity to that in young brains. Analysis of the major raft lipids revealed a slight age‐related increase in cholesterol levels and such increases might enhance membrane lipid order and prevent further loss of PMCA activity.  相似文献   

10.
Non-species isoform-specific antibodies against three isoforms of the plasma membrane Ca2+ pump (PMCA) were used for immuno-localization of PMCA by Western blot analysis in membrane preparations isolated from different regions of gerbil brain. All three gene products were detected in the membranes from hippocampus, cerebral cortex and cerebellum. However, they showed a distinct distribution pattern. Two proteins were revealed in the case of PMCA1 with molecular masses 129 and 135 kDa. The antibody against PMCA2 recognized three proteins of about 130-137 kDa. Only one protein was detected with the anti-PMCA3 antibody. Levels of immuno-signal for the PMCA isoforms varied significantly among the different brain regions. The PMCA1 is the most abundant in the cerebro-cortical and hippocampal membrane preparations. The PMCA2 was detected in a lesser amount comparing to PMCA1 and was highest in the membrane preparations from cerebellum and in a slightly lesser amount from cerebral cortex. Anti-PMCA3 antibody stained weakly and was localized in the cerebellar and hippocampal membrane preparations. Transient forebrain ischemia (10 min) and reperfusion (for a prolonged period up to 10 d) leads to a significant decrease of PMCA immuno-signal. This decrease could be ascribed to the loss of PMCA1 signal, especially in hippocampal membrane preparations.  相似文献   

11.
The plasma membrane Ca2+ ATPase isoform 1(PMCA1) is ubiquitously distributed in tissues and cells, but only scarce information is available on its properties. The isoform was overexpressed in Sf9 cells, purified on calmodulin columns, and characterized functionally. The level of expression was very low, but sufficient amounts of the protein could be isolated for biochemical characterization. The affinity of PMCA1 for calmodulin was similar to that of PMCA4, the other ubiquitous PMCA isoform. The affinity of PMCA1 for ATP, evaluated by the formation of the phosphorylated intermediate, was higher than that of the PMCA4 pump. The recombinant PMCA1 pump was a much better substrate for the cAMP-dependent protein kinase than the PMCA2 and PMCA4 isoforms. Pulse and chase experiments on Sf9 cells overexpressing the PMCA pumps showed that PMCA1 was much less stable than the PMCA4 and PMCA2 isoforms, i.e. PMCA1 had a much higher sensitivity to degradation by calpain. The effect of calpain was not the result of a general higher susceptibility of the PMCA1 to proteolytic degradation, because the pattern of degradation by trypsin was the same in the three isoforms.  相似文献   

12.
Calcium pumps of plasma membrane and cell interior   总被引:1,自引:0,他引:1  
Calcium entering the cell from the outside or from intracellular organelles eventually must be returned to the extracellular milieu or to intracellular storage organelles. The two major systems capable of pumping Ca2+ against its large concentration gradient out of the cell or into the sarco/endoplasmatic reticulum are the plasma membrane Ca2+ ATPases (PMCAs) and the sarco/endoplasmic reticulum Ca2+ ATPases (SERCAs), respectively. In mammals, multigene families code for these Ca2+ pumps and additional isoform subtypes are generated via alternative splicing. PMCA and SERCA isoforms show developmental-, tissue- and cell type-specific patterns of expression. Different PMCA and SERCA isoforms are characterized by different regulatory and kinetic properties that likely are optimized for the distinct functional tasks fulfilled by each pump in setting resting cytosolic or intra-organellar Ca2+ levels, and in shaping intracellular Ca2+ signals with spatial and temporal resolution. The loss or malfunction of specific Ca2+ pump isoforms is associated with defects such as deafness, ataxia or heart failure. Understanding the involvement of different Ca2+ pump isoforms in the pathogenesis of disease allows their identification as therapeutic targets for the development of selective strategies to prevent or combat the progression of these disorders.  相似文献   

13.
14.
The activation and deactivation of Ca2+- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved F?rster resonance energy transfer (FRET), we determined the occurrence of Ca2+-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca2+ concentrations ([Ca2+]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca2+]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.  相似文献   

15.
Mitochondria are dynamic organelles that modulate cellular Ca2+ signals by interacting with Ca2+ transporters on the plasma membrane or the endoplasmic reticulum (ER). To study how mitochondria dynamics affects cell Ca2+ homeostasis, we overexpressed two mitochondrial fission proteins, hFis1 and Drp1, and measured Ca2+ changes within the cytosol and the ER in HeLa cells. Both proteins fragmented mitochondria, decreased their total volume by 25-40%, and reduced the fraction of subplasmalemmal mitochondria by 4-fold. The cytosolic Ca2+ signals elicited by histamine were unaltered in cells lacking subplasmalemmal mitochondria as long as Ca2+ was present in the medium, but the signals were significantly blunted when Ca2+ was removed. Upon Ca2+ withdrawal, the free ER Ca2+ concentration decreased rapidly, and hFis1 cells were unable to respond to repetitive histamine stimulations. The loss of stored Ca2+ was due to an increased activity of plasma membrane Ca2+-ATPase (PMCA) pumps and was associated with an increased influx of Ca2+ and Mn2+ across store-operated Ca2+ channels. The increased Ca2+ influx compensated for the loss of stored Ca2+, and brief Ca2+ additions between successive agonist stimulations fully corrected subsequent histamine responses. We propose that the lack of subplasmalemmal mitochondria disrupts the transfer of Ca2+ from plasma membrane channels to the ER and that the resulting increase in subplasmalemmal [Ca2+] up-regulates the activity of PMCA. The increased Ca2+ extrusion promotes ER depletion and the subsequent activation of store-operated Ca2+ channels. Cells thus adapt to the lack of subplasmalemmal mitochondria by relying on external rather than on internal Ca2+ for signaling.  相似文献   

16.
17.
Plasma membrane Ca(2+)-ATPases (PMCAs) are involved in local Ca(2+) signaling and in the spatial control of Ca(2+) extrusion, but how different PMCA isoforms are targeted to specific membrane domains is unknown. In polarized MDCK epithelial cells, a green fluorescent protein-tagged PMCA4b construct was targeted to the basolateral membrane, whereas a green fluorescent protein-tagged PMCA2b construct was localized to both the apical and basolateral domain. The PDZ protein-binding COOH-terminal tail of PMCA2b was not responsible for its apical membrane localization, as a chimeric pump made of an NH(2)-terminal portion from PMCA4 and a COOH-terminal tail from PMCA2b was targeted to the basolateral domain. Deletion of the last six residues of the COOH terminus of either PMCA2b or PMCA4b did not alter their membrane targeting, suggesting that PDZ protein interactions are not essential for proper membrane localization of the pumps. Instead, we found that alternative splicing affecting the first cytosolic loop determined apical membrane targeting of PMCA2. Only the "w" form, which contains a 45-amino acid residue insertion, showed prominent apical membrane localization. By contrast, the x and z splice variants containing insertions of 14 and 0 residues, respectively, localized to the basolateral membrane. The w splice insert was the crucial determinant of apical PMCA2 localization, and this was independent of the splice configuration at the COOH-terminal end of the pump; both PMCA2w/b and PMCA2w/a showed prominent apical targeting, whereas PMCA2x/b, PMCA2z/b, and PMCA2z/a were confined to the basolateral membrane. These data report the first differential effect of alternative splicing within the first cytosolic loop of PMCA2 and help explain the selective enrichment of specific PMCA2 isoforms in specialized membrane compartments such as stereocilia of auditory hair cells.  相似文献   

18.
Plasma membrane Ca2+ pumps (PMCA pumps) are Ca2+-Mg2+ ATPases that expel Ca2+ from the cytosol to extracellular space and are pivotal to cell survival and function. PMCA pumps are encoded by the genes PMCA1, -2, -3, and -4. Alternative splicing results in a large number of isoforms that differ in their kinetics and activation by calmodulin and protein kinases A and C. Expression by 4 genes and a multifactorial regulation provide redundancy to allow for animal survival despite genetic defects. Heterozygous mice with ablation of any of the PMCA genes survive and only the homozygous mice with PMCA1 ablation are embryolethal. Some PMCA isoforms may also be involved in other cell functions. Biochemical and biophysical studies of PMCA pumps have been limited by their low levels of expression. Delineation of the exact physiological roles of PMCA pumps has been difficult since most cells also express sarco/endoplasmic reticulum Ca2+ pumps and a Na+-Ca2+-exchanger, both of which can lower cytosolic Ca2+. A major limitation in the field has been the lack of specific inhibitors of PMCA pumps. More recently, a class of inhibitors named caloxins have emerged, and these may aid in delineating the roles of PMCA pumps.  相似文献   

19.
The purpose of this study was to invent an extracellular inhibitor selective for the plasma membrane Ca(2+) pump(s) (PMCA) isoform 1. PMCA extrude Ca(2+) from cells during signalling and homeostasis. PMCA isoforms are encoded by 4 genes (PMCA1-4). Pig coronary artery endothelium and smooth muscle express the genes PMCA1 and 4. We showed that the endothelial cells contained mostly PMCA1 protein while smooth muscle cells had mostly PMCA4. A random peptide phage display library was screened for binding to synthetic extracellular domain 1 of PMCA1. The selected phage population was screened further by affinity chromatography using PMCA from rabbit duodenal mucosa which expressed mostly PMCA1. The peptide displayed by the selected phage was termed caloxin 1b3. Caloxin 1b3 inhibited PMCA Ca(2+)-Mg(2+)-ATPase in the rabbit duodenal mucosa (PMCA1) with a greater affinity (inhibition constant=17±2 μM) than the PMCA in the human erythrocyte ghosts (PMCA4, inhibition constant=45±4 μM). The affinity of caloxin 1b3 was also higher for PMCA1 than for PMCA2 and 3 indicating its selectivity for PMCA1. Consistent with an inhibition of PMCA1, caloxin 1b3 addition to the medium increased cytosolic Ca(2+) concentration in endothelial cells. Caloxin 1b3 is the first known PMCA1 selective inhibitor. We anticipate caloxin 1b3 to aid in understanding PMCA physiology in endothelium and other tissues.  相似文献   

20.
Plasma membrane calcium ATPases (PMCAs) actively extrude Ca(2+) from the cell and are essential components in maintaining intracellular Ca(2+) homeostasis. There are four PMCA isoforms (PMCA1-4), and alternative splicing of the PMCA genes creates a suite of calcium efflux pumps. The role of these different PMCA isoforms in the control of calcium-regulated cell death pathways and the significance of the expression of multiple isoforms of PMCA in the same cell type are not well understood. In these studies, we assessed the impact of PMCA1 and PMCA4 silencing on cytoplasmic free Ca(2+) signals and cell viability in MDA-MB-231 breast cancer cells. The PMCA1 isoform was the predominant regulator of global Ca(2+) signals in MDA-MB-231 cells. PMCA4 played only a minor role in the regulation of bulk cytosolic Ca(2+), which was more evident at higher Ca(2+) loads. Although PMCA1 or PMCA4 knockdown alone had no effect on MDA-MB-231 cell viability, silencing of these isoforms had distinct consequences on caspase-independent (ionomycin) and -dependent (ABT-263) cell death. PMCA1 knockdown augmented necrosis mediated by the Ca(2+) ionophore ionomycin, whereas apoptosis mediated by the Bcl-2 inhibitor ABT-263 was enhanced by PMCA4 silencing. PMCA4 silencing was also associated with an inhibition of NFκB nuclear translocation, and an NFκB inhibitor phenocopied the effects of PMCA4 silencing in promoting ABT-263-induced cell death. This study demonstrates distinct roles for PMCA1 and PMCA4 in the regulation of calcium signaling and cell death pathways despite the widespread distribution of these two isoforms. The targeting of some PMCA isoforms may enhance the effectiveness of therapies that act through the promotion of cell death pathways in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号