首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The dose-dependent toxicities of doxorubicin (DOX) limit its clinical applications, particularly in drug-resistant cancers, such as liver cancer. In this study, we investigated the role of quercetin on the antitumor effects of DOX on liver cancer cells and its ability to provide protection against DOX-mediated liver damage in mice.

Methodology and Results

The MTT and Annexin V/PI staining assay demonstrated that quercetin selectively sensitized DOX-induced cytotoxicity against liver cancer cells while protecting normal liver cells. The increase in DOX-mediated apoptosis in hepatoma cells by quercetin was p53-dependent and occurred by downregulating Bcl-xl expression. Z-VAD-fmk (caspase inhibitor), pifithrin-α (p53 inhibitor), or overexpressed Bcl-xl decreased the effects of quercetin on DOX-mediated apoptosis. The combined treatment of quercetin and DOX significantly reduced the growth of liver cancer xenografts in mice. Moreover, quercetin decreased the serum levels of alanine aminotransferase and aspartate aminotransferase that were increased in DOX-treated mice. Quercetin also reversed the DOX-induced pathological changes in mice livers.

Conclusion and Significance

These results indicate that quercetin potentiated the antitumor effects of DOX on liver cancer cells while protecting normal liver cells. Therefore, the development of quercetin may be beneficial in a combined treatment with DOX for increased therapeutic efficacy against liver cancer.  相似文献   

2.
3.
4.
p53 is a key regulator in cell apoptosis, and cancer cells deficient in p53 expression fail to respond to chemotherapy. Here we show that effective Doxorubicin (DOX)-induced apoptosis is p53-dependent. However, an alternative treatment of DOX/TNF-alpha/DOX restored sensitivity of p53-deficient cells to DOX-induced apoptosis. Treatment of cells with TNF-alpha resulted in a decrease of p21 (waf1/cip1/sdi1) expression following second dose of DOX. In previous work, we demonstrated that p21 suppressed DOX-induced apoptosis via its (cyclin-dependent kinase) CDK-binding and CDK-inhibitory activity. Thus, we propose that TNF-alpha enhances the anti-cancer effect of DOX through suppressing the anti-apoptotic activity of p21, and that a combined treatment TNF-alpha/Dox is an effective chemotherapeutic strategy for p53-deficient cancers.  相似文献   

5.
6.

Background

Neurons are more likely to die through apoptosis in the immature brain after injury whereas adult neurons in the mature brain die by necrosis. Several studies have suggested that this maturational change in the mechanism of cell death is regulated, in part, by thyroid hormone. We examined the involvement of the hairless (Hr) gene which has been suspected of having a role in cell cycle regulation and apoptosis in the hair follicle and is strongly regulated by the thyroid hormone in the brain.

Methodology

Forced expression of Hr by transfection decreased the number of apoptotic nuclei, levels of caspase-3 activity, and cytosolic cytochrome C in COS cells exposed to staurosporine and tunicamycin. Similarly, capsase-3 activity was lower and the decrease in mitochondrial membrane potential was smaller in cultures of adult cerebellar granule neurons from wild type mice compared to Hr knockout mice induced to undergo apoptosis. In vivo, apoptosis as detected by positive TUNEL labeling and caspase 3 activity was lower in wild-type mice compared to Hr knockouts after exposure to trimethyltin. Hr expression lowered levels of p53, p53 mediated reporter gene activity, and lower levels of the pro-apoptotic Bcl2 family member Bax in COS cells. Finally, Hr expression did not attenuate apoptosis in mouse embryonic fibroblasts from p53 knockout mice but was effective in mouse embryonic fibroblasts from wild type mice.

Conclusions/Significance

Overall, our studies demonstrate that Hr evokes an anti-apoptotic response by repressing expression of p53 and pro-apoptotic events regulated by p53.  相似文献   

7.
8.

Background

Use of the chemotherapeutic drug doxorubicin (DOX) is associated with serious cardiotoxicity, as it increases levels of reactive oxygen species (ROS). N-3 polyunsaturated fatty acid dietary supplements can be of benefit to patients undergoing cancer therapy. The aims of this study were to determine whether DOX-induced cardiotoxicity is related to mitochondrial uncoupling proteins and whether eicosapentaenoic acid (EPA, C20:5 n-3) or docosahexaenoic acid (DHA, C22:6 n-3) affects DOX-induced cardiomyocyte toxicity.

Results

Treatment of H9C2 cells with DOX resulted in decreased cell viability and UCP2 expression. Treatment with 100 μM EPA or 50 μM DHA for 24 h resulted in a maximal mitochondria concentration of these fatty acids and increased UCP2 expression. Pretreatment with 100 μM EPA or 50 μM DHA prevented the DOX-induced decrease in UCP2 mRNA and protein levels, but these effects were not seen with EPA or DHA and DOX cotreatment. In addition, the DOX-induced increase in ROS production and subsequent mitochondrial membrane potential change (∆ψ) were significantly attenuated by pretreatment with EPA or DHA.

Conclusion

EPA or DHA pre-treatment inhibits the DOX-induced decrease in UCP2 expression, increase in ROS production, and subsequent mitochondrial membrane potential change that contribute to the cardiotoxicity of DOX.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0101-3) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background

The pathogenesis of glioma is unclear. The disturbance of the apoptosis process plays a critical role in glioma growth. Factors regulating the apoptosis process are to be further understood. This study aims to investigate the role of protease activated receptor-2 (PAR2) in regulation the apoptosis process in glioma cells.

Results

The results showed that U87 cells and human glioma tissue expressed PAR2. Exposure to tryptase, or the PAR2 active peptide, increased STAT3 phosphorylation in the radiated U87 cells, reduced U87 cell apoptosis, suppressed the expression of p53 in U87 cells.

Conclusions

Activation of PAR2 can reduce the radiated U87 cell apoptosis via modulating the expression of p53. The results implicate that PAR2 may be a novel therapeutic target in the treatment of glioma.  相似文献   

10.
Prykhozhij SV 《PloS one》2010,5(10):e13549

Background

Sonic hedgehog (Shh) signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation.

Methodology/Principal Findings

Analysis of the zebrafish shh −/− mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh −/− mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh) signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh −/− mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh −/− mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53 −/− shh −/− mutant retina suggesting the effect of p53 on retinal differentiation.

Conclusions

Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors.  相似文献   

11.

Introduction

Dexamethasone (DEX) co-treatment has proved beneficial in NSCLC patients, improving clinical symptoms by the reduction of side effects after chemotherapy. However, recent studies have shown that DEX could render cancer cells more insensitive to cytotoxic drug therapy, but it is not known whether DEX co-treatment could influence therapy-induced senescence (TIS), and unknown whether it is in a p53-dependent or p53-independent manner.

Methods

We examined in different human NSCLC cell lines and detected cellular senescence after cisplatin (DDP) treatment in the presence or absence of DEX. The in vivo effect of the combination of DEX and DDP was assessed by tumor growth experiments using human lung cancer cell lines growing as xenograft tumors in nude mice.

Results

Co-treatment with DEX during chemotherapy in NSCLC resulted in increased tumor cell viability and inhibition of TIS compared with DDP treated group. DEX co-treatment cells exhibited the decrease of DNA damage signaling pathway proteins, the lower expression of p53 and p21CIP1, the lower cellular secretory program and down-regulation of NF-κB and its signaling cascade. DEX also significantly reduced DDP sensitivity in vivo.

Conclusions

Our results underscore that DEX reduces chemotherapy sensitivity by blunting therapy induced cellular senescence after chemotherapy in NSCLC, which may, at least in part, in a p53-dependent manner. These data therefore raise concerns about the widespread combined use of gluocorticoids (GCs) with antineoplastic drugs in the clinical management of cancer patients.  相似文献   

12.
Xiang T  Li L  Yin X  Yuan C  Tan C  Su X  Xiong L  Putti TC  Oberst M  Kelly K  Ren G  Tao Q 《PloS one》2012,7(1):e29783

Background

Breast cancer (BrCa) is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1) is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear.

Methodology/Principal Findings

We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90%) and 53 of 66 (80%) primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90S-expressed cells.

Conclusions/Significance

UCHL1 exerts its tumor suppressive functions by inducing G0/G1cell cycle arrest and apoptosis in breast tumorigenesis, requiring its deubiquitinase activity. Its frequent silencing by promoter CpG methylation may serve as a potential tumor marker for breast cancer.  相似文献   

13.
14.

Background and Purpose

To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies.

Materials and Methods

DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively) were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs) by immunostaining of phosphorylated H2AX (γH2AX), and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3.

Results

The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation.

Conclusions

Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.  相似文献   

15.

Background

Topotecan produces DNA damage that induces autophagy in cancer cells. In this study, sensitising topotecan to colon cancer cells with different P53 status via modulation of autophagy was examined.

Methodology/Principal Findings

The DNA damage induced by topotecan treatment resulted in cytoprotective autophagy in colon cancer cells with wild-type p53. However, in cells with mutant p53 or p53 knockout, treatment with topotecan induced autophagy-associated cell death. In wild-type p53 colon cancer cells, topotecan treatment activated p53, upregulated the expression of sestrin 2, induced the phosphorylation of the AMPKα subunit at Thr172, and inhibited the mTORC1 pathway. Furthermore, the inhibition of autophagy enhanced the anti-tumour effect of topotecan treatment in wild-type p53 colon cancer cells but alleviated the anti-tumour effect of topotecan treatment in p53 knockout cells in vivo.

Conclusions/Significance

These results imply that the wild-type p53-dependent induction of cytoprotective autophagy is one of the cellular responses that determines the cellular sensitivity to the DNA-damaging drug topotecan. Therefore, our study provides a potential therapeutic strategy that utilises a combination of DNA-damaging agents and autophagy inhibitors for the treatment of colon cancer with wild-type p53.  相似文献   

16.
17.

Background

Disruption of the nucleolus often leads to activation of the p53 tumor suppressor pathway through inhibition of MDM2 that is mediated by a limited set of ribosomal proteins including RPL11 and RPL5. The effects of ribosomal protein loss in cultured mammalian cells have not been thoroughly investigated. Here we characterize the cellular stress response caused by depletion of ribosomal protein S9 (RPS9).

Methodology/Principal Findings

Depletion of RPS9 impaired production of 18S ribosomal RNA and induced p53 activity. It promoted p53-dependent morphological differentiation of U343MGa Cl2:6 glioma cells as evidenced by intensified expression of glial fibrillary acidic protein and profound changes in cell shape. U2OS osteosarcoma cells displayed a limited senescence response with increased expression of DNA damage response markers, whereas HeLa cervical carcinoma cells underwent cell death by apoptosis. Knockdown of RPL11 impaired p53-dependent phenotypes in the different RPS9 depleted cell cultures. Importantly, knockdown of RPS9 or RPL11 also markedly inhibited cell proliferation through p53-independent mechanisms. RPL11 binding to MDM2 was retained despite decreased levels of RPL11 protein following nucleolar stress. In these settings, RPL11 was critical for maintaining p53 protein stability but was not strictly required for p53 protein synthesis.

Conclusions

p53 plays an important role in the initial restriction of cell proliferation that occurs in response to decreased level of RPS9. Our results do not exclude the possibility that other nucleolar stress sensing molecules act upstream or in parallel to RPL11 to activate p53. Inhibiting the expression of certain ribosomal proteins, such as RPS9, could be one efficient way to reinitiate differentiation processes or to induce senescence or apoptosis in rapidly proliferating tumor cells.  相似文献   

18.
Valle CW  Min T  Bodas M  Mazur S  Begum S  Tang D  Vij N 《PloS one》2011,6(12):e29073

Background

Valosin-containing protein (VCP)/p97 is an AAA ATPase molecular chaperone that regulates vital cellular functions and protein-processing. A recent study indicated that VCP expression levels are correlated with prognosis and progression of non-small cell lung carcinoma (NSCLC). We not only verified these findings but also identified the specific role of VCP in NSCLC pathogenesis and progression.

Methodology/Principal Findings

Our results show that VCP is significantly overexpressed in non-small cell lung carcinoma (NSCLC) as compared to normal tissues and cell lines (p<0.001). Moreover, we observed the corresponding accumulation of ubiquitinated-proteins in NSCLC cell lines and tissues as compared to the normal controls. VCP inhibition by si/shRNA or small-molecule (Eeyarestatin I, EerI) significantly (p<0.05, p<0.00007) suppressed H1299 proliferation and migration but induced (p<0.00001) apoptosis. Cell cycle analysis by flow cytometry verified this data and shows that VCP inhibition significantly (p<0.001, p<0.003) induced cell cycle arrest in the G0/G1 phases. We also found that VCP directly regulates p53 and NFκB protein levels as a potential mechanism to control tumor cell proliferation and progression. Finally, we evaluated the therapeutic potential of VCP inhibition and observed significantly reduced NSCLC tumor growth in both in vitro and xenograft murine (athymic-nude) models after EerI treatment (p<0.05).

Conclusions/Significance

Thus, targeting VCP in NSCLC may provide a novel strategy to restore p53 and NFκB levels and ameliorate the growth and tumorigenicity, leading to improved clinical outcomes.  相似文献   

19.

Background

Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro.

Methods

Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT- α). Equally, Mdm2 was knocked-down with siRNA.

Results

Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α.

Conclusions

These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation.  相似文献   

20.
Wei N  Liu SS  Chan KK  Ngan HY 《PloS one》2012,7(1):e30311

Background

Programmed cell death 4 (PDCD4), originally identified as the neoplastic transformation inhibitor, was attenuated in various cancer types. Our previous study demonstrated a continuous down-regulation of PDCD4 expression in the sequence of normal-borderline-malignant ovarian tissue samples and a significant correlation of PDCD4 expression with disease-free survival. The objective of the current study was to further investigate the function and modulation of PDCD4 in ovarian cancer cells.

Principal Findings

We demonstrated that ectopic PDCD4 expression significantly inhibited cell proliferation by inducing cell cycle arrest at G1 stage and up-regulation of cell cycle inhibitors of p27 and p21. Cell migration and invasion were also inhibited by PDCD4. PDCD4 over-expressing cells exhibited elevated phosphatase and tensin homolog (PTEN) and inhibited protein kinase B (p-Akt). In addition, the expression of PDCD4 was up-regulated and it was exported to the cytoplasm upon serum withdrawal treatment, but it was rapidly depleted via proteasomal degradation upon serum re-administration. Treatment of a phosphoinositide 3-kinase (PI3K) inhibitor prevented the degradation of PDCD4, indicating the involvement of PI3K-Akt pathway in the modulation of PDCD4.

Conclusion

PDCD4 may play a critical function in arresting cell cycle progression at key checkpoint, thus inhibiting cell proliferation, as well as suppressing tumour metastasis. The PI3K-Akt pathway was implied to be involved in the regulation of PDCD4 degradation in ovarian cancer cells. In response to the stress condition, endogenous PDCD4 was able to shuttle between cell compartments to perform its diverted functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号