首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to explore whether rhein could enhance the effects of pemetrexed (PTX) on the therapy of non-small-cell lung cancer (NSCLC) and to clarify the associated molecular mechanism. Our study shows that rhein in combination with PTX could obviously increase the systemic exposure of PTX in rats, which would be mediated by the inhibition of organic anion transporters (OATs). Furthermore, the toxicity of PTX was significantly raised by rhein in A549 cells in a concentration-dependent manner. Concomitant administration of rhein and PTX-induced cell apoptosis compared with PTX alone in flow cytometry assays, which was further validated by the protein expressions of the apoptotic markers B-cell lymphoma-2/Bcl-2-associated x (Bcl-2/Bax) and Cleaved-Caspase3 (Cl-Caspase3). Meanwhile, the results of monodansylcadaverine (MDC) dyeing experiments showed that PTX-induced autophagy could be enhanced by combination therapy with rhein in A549 cells. Western blot analysis indicated that the synergistic effect of rhein on PTX-mediated autophagy may be interrelated to PI3K–AKT–mTOR pathway inhibition and to the enhancement of p-AMPK and light chain 3-II (LC3-II) protein levels. From these findings, it could be surmised that rhein enhanced the antitumor activity of PTX through influencing autophagy and apoptosis by modulating the PI3K–AKT–mTOR pathway and Bcl-2 family of proteins in A549 cells. Our findings demonstrated that the potential application of rhein as a candidate drug in combination with PTX is promising for treatment of the human lung cancer.  相似文献   

2.
3.
Lead optimization efforts that employed structure base drug design and physicochemical property based optimization leading to the discovery of a novel series of 4-methylpyrido pyrimidinone (MPP) are discussed. Synthesis and profile of 1, a PI3Kα/mTOR dual inhibitor, is highlighted.  相似文献   

4.
Anticancer therapeutics with profiles of high potency, low toxicity, and low resistance is of considerable interest. A new series of functionalized spirooxindole linked with 3-acylindole scaffold is reported, starting from chalcones derived from 3-acetyl indole with isatin, and l-4-thiazolidinecarboxylic acid. The reactions proceeded regioselectivity, stereoselectivity, without side products in high yield (71–89%). The new spirooxindole hybrids have been evaluated in vitro for their antiproliferative effects against colon cancer (HCT-116), hepatocellular carcinoma (HepG2) and prostate cancer (PC-3). The selectivity of their activity was evaluated. Some of the synthesized compounds showed considerable anticancer activities. Compound 4k proved to retain a high cytotoxic activity and selectivity against colon cancer cells HCT-116 (IC50 = 7 ± 0.27 µM, SI: 3.7), and HepG2 (IC50 = 5.5 ± 0.2 µM, SI: 4.7) in comparison to (IC50 = 12.6 ± 0.5, SI: 0.4 and 5.5 ± 0.3 µM, SI: 0.9, respectively). Compound 4k was less active (IC50 = 6 ± 0.3 µM, SI: 4.3) than cisplatin (IC50 = 5 ± 0.56 µM, SI: 1.0) but showed greater selectivity towards prostate cancer cells PC-3 in comparison to cisplatin. The details of the binding mode of the active compounds were clarified by molecular docking. Ligand Efficiency (LE) and Ligand Lipophilic Efficiency (LLE) were evaluated and revealed that compound 4k had acceptable value.  相似文献   

5.
Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate to generate a key lipid second messenger, phosphatidylinositol 3,4,5-bisphosphate. PI3Kα and PI3Kγ require activation by RAS proteins to stimulate signaling pathways that control cellular growth, differentiation, motility and survival. Intriguingly, RAS binding to PI3K isoforms likely differ, as RAS mutations have been identified that discriminate between PI3Kα and PI3Kγ, consistent with low sequence homology (23%) between their RAS binding domains (RBDs). As disruption of the RAS/PI3Kα interaction reduces tumor growth in mice with RAS- and epidermal growth factor receptor driven skin and lung cancers, compounds that interfere with this key interaction may prove useful as anti-cancer agents. However, a structure of PI3Kα bound to RAS is lacking, limiting drug discovery efforts. Expression of full-length PI3K isoforms in insect cells has resulted in low yield and variable activity, limiting biophysical and structural studies of RAS/PI3K interactions. This led us to generate the first RBDs from PI3Kα and PI3Kγ that can be expressed at high yield in bacteria and bind to RAS with similar affinity to full-length PI3K. We also solved a 2.31 Å X-ray crystal structure of the PI3Kα-RBD, which aligns well to full-length PI3Kα. Structural differences between the PI3Kα and PI3Kγ RBDs are consistent with differences in thermal stability and may underly differential RAS recognition and RAS-mediated PI3K activation. These high expression, functional PI3K RBDs will aid in interrogating RAS interactions and could aid in identifying inhibitors of this key interaction.  相似文献   

6.
Phosphatidylinositol-3-kinase beta (PI3Kβ) is an important therapeutic target in arterial thrombosis and special types of cancer. In this study, a new series of aminopyridine-based PI3Kβ selective inhibitors have been developed by the structure-based design strategy. When incorporated with the phenyl ring on sulfonamide moiety, aminopyrimidine analogs showed good potency on PI3Kβ and selectivity over PI3Kα. Intriguingly, replacement of phenyl group on sulfonamide with naphthyl group enhanced selectivity over PI3Kα while retaining submicromolar PI3Kβ potency. Molecular modeling suggests that increased PI3Kβ specificity is caused by the interaction with salt bridge (Lys782-Asp923) and Asp862 that creat a unique pocket in PI3Kβ. These results clearly provide useful insight in the design of new PI3Kβ inhibitors with high potency and selectivity.  相似文献   

7.
A combinatorial library of β-chlorovinyl chalcones (4) were synthesized by Claisen–Schmidt condensation reaction. Catalytic reaction of substituted 3-chloro-3-phenyl-propenal (2) and 1-(2,4-dimethoxy-phenyl)-ethanone or 1-(4-methoxy-phenyl)-ethanone (3) in alkaline conditions furnished the target compound 5-chloro-1-(2,4-dimethoxy-phenyl)-5-phenyl-penta-2,4-dien-1-one (4). The synthesized compounds were screened for their biological activity viz. anticancer, anti-inflammatory and antimicrobial activities. Synthesized compounds 4g and 4h revealed promising anti-inflammatory activity (66–67% TNF-α and 95–97% IL-6 inhibitory activity at 10 μM). Cytotoxicity of the compounds checked using CCK-8 cell lines and found to be nontoxic to slightly toxic. Furthermore, the anticancer activity (30–40%) was shown by compounds 4d, 4e, 4h and 4b at 10 μM concentrations against ACHN followed by Calu 1, Panc1, HCT116 and H460 cell lines. Some of the compounds 4d, 4e, 4a, 4i and 4b revealed promising antimicrobial activity at MIC 50–100 μg/mL against selected pathogenic bacteria and fungi.  相似文献   

8.
PI3Kα/mTOR ATP-competitive inhibitors are considered as one of the promising molecularly targeted cancer therapeutics. Based on lead compound A from the literature, two similar series of 2-substituted-4-morpholino-pyrido[3,2-d]pyrimidine and pyrido[2,3-d]pyrimidine analogs were designed and synthesized as PI3Kα/mTOR dual inhibitors. Interestingly, most of the series gave excellent inhibition for both enzymes with IC50 values ranging from single to double digit nM. Unlike many PI3Kα/mTOR dual inhibitors, our compounds displayed selectivity for PI3Kα. Based on its potent enzyme inhibitory activity, selectivity for PI3Kα and good therapeutic index in 2D cell culture viability assays, compound 4h was chosen to be evaluated in 3D culture for its IC50 against MCF7 breast cancer cells as well as for docking studies with both enzymes.  相似文献   

9.
10.
Dual PI3Kγ/δ inhibitors have recently been shown to be suitable targets for inflammatory and respiratory diseases. In a recent study we described the discovery of selective PI3Kγ inhibitors based on a triazolopyridine scaffold. Herein, we describe the elaboration of this structural class into dual PI3Kγ/δ inhibitors with excellent selectivity over the other PI3K isoforms and the general kinome. Structural optimization led to the identification of two derivatives which showed significant efficacy in an acute model of lung inflammation.  相似文献   

11.
The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in the regulation of cellular growth, survival and proliferation. mTOR and PI3K have attracted particular attention as cancer targets. These kinases belong to the phosphatidylinositol-3-kinase-related kinase (PIKK) family and therefore have considerable homology in their active sites. To accelerate the discovery of inhibitors with selective activity against mTOR and PI3K as cancer targets, in this work, a homology model of mTOR was developed to identify the structural divergence in the active sites between mTOR and PI3Kα. Furthermore, two highly predictive comparative molecular similarity index analyses (CoMSIA) models were built based on 304 selective inhibitors docked into mTOR and PI3Kα, respectively (mTOR: q 2 = 0.658, r pre2 = 0.839; PI3Kα: q 2 = 0.540, r pre2 = 0.719). The results showed that steric and electrostatic fields have an important influence on selectivity towards mTOR and PI3Kα—a finding consistent with the structural divergence between the active sites. The findings may be helpful in investigating selective mTOR/PI3Kα inhibitors.  相似文献   

12.
Activated phosphatidylinositol 3 kinase/Protein kinase B (PI3K/AKT) signalling with increased or reduced mTOR and GSK3β activity influences the wound repair process. Diabetic wounds, usually ulcerated, are characterised by reduced growth factors and cellular performance. The occurrence of diabetic ulcers is linked to peripheral arterial disease, neuropathy, and wound contamination. Lasers or light emitting diodes (LEDs) provide photon energy with therapeutic benefits (Photobiomodulation-PBM), and has been broadly commended to quicken diabetic wound healing. PBM is efficient in the visible red and near-infrared electromagnetic spectrum, and fluencies ranging from 2 to 6 J/cm2. However, cellular and molecular mechanisms induced by PBM are not fully understood. In this review we discuss PBM and the PI3K/AKT pathway with specific focus on the mTOR and GSK3β downstream activity in diabetic wound healing.  相似文献   

13.
Phosphoinositide 3-kinases (PI3Ks) are important signaling enzymes involved in the regulation of a number of critical cell functions. Significant progress has been made during the last few years in defining the implication of individual PI3K isoforms. The role of the class IA PI3Kβ in different cell types has only been recently uncovered by the use of isoform-selective inhibitors and the development of mouse models harboring p110β catalytic subunit knock-out or germline knock-in of a kinase-dead allele of p110β. Although it is classically admitted that class IA PI3Ks are activated by receptor tyrosine kinases through recruitment of the regulatory subunits to specific tyrosine phosphorylated motifs via their SH2 domains, PI3Kβ is activated downstream of G protein-coupled receptors, and by co-operation between heterotrimeric G proteins and tyrosine kinases. PI3Kβ has been extensively studied in platelets where it appears to play an important role downstream of ITAM signaling, G protein-coupled receptors and aIIbβ3 integrin. Accordingly, mouse exhibiting p110β inactivation selectively in megakaryocyte/platelets are resistant to thromboembolism induced by carotid injury. The present review summarizes recent data concerning the mechanisms of PI3Kβ regulation and the roles of this PI3K isoform in blood platelet functions and other cell types.  相似文献   

14.
Chemical optimization of pyrazolopyridine 1, focused on cellular potency, isoform selectivity and microsomal stability, led to the discovery of the potent, selective and orally available PI3Kδ inhibitor 5d. On the basis of its desirable potency, selectivity and pharmacokinetic profiles, 5d was tested in the trinitrophenylated aminoethylcarboxymethyl-Ficoll (TNP-Ficoll)-induced antibody production model, and showed higher antibody inhibition than a 4-fold oral dose of the starting compound 1. These excellent results suggest that 5d is a potential candidate for further studies in the treatment of autoimmune diseases and leukocyte malignancies.  相似文献   

15.
Phosphatidylinositol-3-kinase alpha (PI3Kα) is an important target in cancer due to the deregulation of the PI3K/AKT signaling pathway in many tumors. In this study, we designed [3,5-d]-7-azaindole analogs as PI3Kα inhibitors through the fragment-growing strategy. By varying groups at the 3,5-positions of azaindole, we developed the SAR (Structure-activity relationship) and identified a series of potent PI3Kα inhibitors. Representative azaindole derivatives showed activity in a cellular proliferation and apoptosis assays. Moreover, B3 exhibited strong antiangiogenic effects on cancer cells.  相似文献   

16.
A novel class of potent PI3Kδ inhibitors with >1000-fold selectivity against other class I PI3K isoforms is described. Optimization of the substituents on a triazole aminopyrazine scaffold, emerging from an in-house PI3Kα program, turned moderately selective PI3Kδ compounds into highly potent and selective PI3Kδ inhibitors. These efforts resulted in a series of aminopyrazines with PI3Kδ IC50 ? 1 nM in the enzyme assay, some of the most selective PI3Kδ inhibitors published to date, with a cell potency in a JeKo-cell assay of 20–120 nM.  相似文献   

17.
Selective PI3Kδ inhibitors have recently been hypothesized to be appropriate immunosuppressive agents for the treatment of immunological disorders such as rheumatoid arthritis. However, few reports have highlighted molecules that are highly selective for PI3Kδ over the other PI3K isoforms. In this letter, isoform and kinome selective PI3Kδ inhibitors are presented. The Structural Activity Relationship leading to such molecules is outlined.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号