首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrapulmonary chemoreceptors (IPC) are highly responsive respiratory chemoreceptors that innervate the lungs of birds and diapsid reptiles. IPC are stimulated by low levels of lung Pco(2), inhibited by high levels of lung Pco(2), and their vagal afferents serve as a sensory limb for reflex adjustments of breathing depth and rate. Most IPC exhibit both phasic and tonic sensitivity to CO(2), and spike frequency adaptation (SFA) contributes to their phasic CO(2) responsiveness. To test whether CO(2) responsiveness and SFA in IPC is modulated by a Ca(2+)-linked mechanism, we quantified the role of transmembrane Ca(2+) fluxes and Ca(2+)-related channels on single-unit IPC function in response to phasic changes in inspired Pco(2). We found that 1) broad-spectrum blockade of Ca(2+) channels using cadmium or cobalt and blockade of L-type Ca(2+) channels using nifedipine increased IPC discharge; 2) activation of L-type Ca(2+) channels using BAY K 8644 reduced IPC discharge; 3) blockade of Ca(2+)-activated potassium channels using charybdotoxin (antagonist of large-conductance Ca(2+)-dependent K(+) channel) increased IPC discharge, but neither charybdotoxin nor apamin affected SFA; and 4) blockade of chloride channels, including Ca(2+)-activated chloride channels, with niflumic acid decreased IPC discharge at low Pco(2) and increased IPC discharge at high Pco(2), resulting in a net attenuation of the IPC CO(2) response. We conclude that Ca(2+) influx through L-type Ca(2+) channels has an inhibitory effect on IPC afferent discharge and CO(2) sensitivity, that spike frequency adaptation is not due to apamin- or charybdotoxin-sensitive Ca(2+)-activated K(+) channels in IPC, and that chloride channels blocked by niflumic acid help modulate IPC CO(2) responses.  相似文献   

2.
Yields based on carbon are usually reported in prebiotic experiments, while energy yields (moles cal-1) are more useful in estimating the yields of products that would have been obtained from the primitive atmosphere of the earth. Energy yields for the synthesis of HCN and H2CO from a spark discharge were determined for various mixtures of CH4, CO, CO2, H2, H2O, N2 and NH3. The maximum yields of HCN and H2CO from CH4, CO, and CO2 as carbon sources are about 4 X 10(-8) moles cal-1.  相似文献   

3.
Plasma Physics Reports - Rate constant of electron-impact dissociation of CO2 in a direct-current atmospheric-pressure gas discharge is found based on detailed analysis and generalization of the...  相似文献   

4.
The purpose of these studies is to better understand the nature of the reflex interactions that control the discharge patterns of caudal medullary, expiratory (E) bulbospinal neurons. We examined the effect of central chemodrive inputs measured as arterial CO(2) tension (Pa(CO(2))) during hyperoxia on the excitatory and inhibitory components of the lung inflation responses of these neurons in thiopental sodium-anesthetized, paralyzed dogs. Data from slow ramp inflation and deflation test patterns, which were separated by several control inflation cycles, were used to produce plots of neuronal discharge frequency (F(n)) versus transpulmonary pressure (P(t)). P(t) was used as an index of the activity arising from the slowly adapting pulmonary stretch receptors (PSRs). Changes in inspired CO(2) concentrations were used to produce Pa(CO(2)) levels that ranged from 20 to 80 mmHg. The data obtained from 41 E neurons were used to derive an empirical model that quantifies the average relationship for F(n) versus both P(t) and Pa(CO(2)). This model can be used to predict the time course and magnitude of E neuronal responses to these inputs. These data suggest that the interaction between Pa(CO(2)) and PSR-mediated excitation and inhibition of F(n) is mainly additive, but synergism between Pa(CO(2)) and excitatory inputs is also present. The implications of these findings are discussed.  相似文献   

5.
The concentration of carbon suboxide (C3O2) in the plasmas of sealed-off discharges in mixtures of CO with noble gases is measured for the first time by mass-spectroscopic technique. It is shown that the production of C3O2 (and, possibly, more complex carbon oxides) in a gas-discharge plasma significantly boosts the vibrational relaxation of CO molecules and thus greatly affects their vibrational populations. Adding xenon to a He: CO mixture reduces the concentration of C3O2. The effect of pulsed UV radiation on the vibrational populations of CO molecules is studied experimentally. It is shown that UV irradiation of the gas mixture after long-term discharge operation increases vibrational populations in the plateau region up to the values observed at the beginning of the discharge. This effect is attributed to the decay of C3O2 molecules under the action of UV radiation.  相似文献   

6.
The discharge frequency of pulmonary stretch receptors (PSRs) shows an inverse responsiveness to the CO2 partial pressure (PCO2), which is limited to an extremely hypocapnic range. During inspiration extremely hypocapnic PCO2 levels are obtained in a large part of the respiratory tract due to the diffusion limited gas mixing. The question remains whether PSRs in combination with these low levels of PCO2 are involved in the regulation of breathing. As a necessary first step to be able to answer this question, this paper is devoted to the calculation of the within-breath PCO2 transients in the respiratory tract and the corresponding PCO2 oscillations in the superficial airway tissue. For PSRs located in the smooth muscles of large bronchi, the calculations predict a time delay of a few seconds to adapt their discharge frequency to a change in PCO2 in the airway lumen. The result is in good agreement with the observed time delay reported in the literature. For the PSRs located in the acini the calculated time constant of their discharge response to PCO2 variations in the lumen is much smaller than 250 ms. This implies a within-breath response to the oscillating luminal PCO2. Further, the calculations show that a CO2 diffusion front is established within the acini during early inspiration. This diffusion front penetrates further and further into the acini with increasing work load due to the concomitant increase in inspiratory flow. As a consequence, the discharge frequency vs. volume response curve of PSRs, especially those located in distal airways, may be modified by a flow-induced PCO2-related contribution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A model primitive gas containing a mixture of N2, CO and water vapor over a water pool (300 mL, 37 °C) was subjected to electric discharges. The discharge vessel (7 L in volume) was equipped with a CO2 absorber (The CO2 being formed during the discharge), thus simulating possible absorption of CO2 in the primitive ocean. The vessel also has a cold trap ( –15 °C), which protects the primary products against the further decomposition in the discharge phase by enabling these products to adhere to the trap. Since the partial pressures of CO and N2 decreased at rates of 1.5–1.7 cmHg day–1 and 0.1–0.2 cmHg day–1, respectively, the gases were added at regular intervals. The solution was analyzed at regular intervals for HCN, HCHO and urea, and maximum concentrations of about 50, 2, and 140 mM were observed. The discharge phase was continued for 6 months. In the solution, glycine (5.6% yield based on the carbon), glycylglycine (0.64%), orotic acid (0.004%) and small amounts of the other amino acids were found.  相似文献   

8.
Microinjection of dl-homocysteic acid (DLH), a glutamate analog, into the pre-B?tzinger complex (pre-B?tC) can produce tonic excitation of phrenic nerve discharge. Although this DLH-induced tonic excitation can be modified by systemic hypercapnia, the role of focal increases in pre-B?tC CO(2)/H(+) in this modulation of the DLH-induced response remains to be determined. Therefore, we examined the effects of unilateral microinjection of DLH (10 mM; 10-20 nl) into the pre-B?tC before and during increased focal pre-B?tC CO(2)/H(+) (i.e., focal tissue acidosis) in chloralose-anesthetized, vagotomized, mechanically ventilated cats. Focal tissue acidosis was produced by blockade of carbonic anhydrase with either focal acetazolamide (AZ) or methazolamide (MZ) microinjection. For these experiments, sites were selected in which unilateral microinjection of DLH into the pre-B?tC produced a nonphasic tonic excitation of phrenic nerve discharge (n = 10). Microinjection of 10-20 nl AZ (50 microM) or MZ (50 microM) into these 10 sites in the pre-B?tC increased the amplitude and/or frequency of eupneic phrenic bursts, as previously reported. Subsequent microinjection of DLH produced excitation in which phasic respiratory bursts were superimposed on tonic discharge. These DLH-induced phasic respiratory bursts had an increased frequency compared with the preinjection baseline frequency (P < 0.05). These findings demonstrate that modulation of phrenic motor activity evoked by DLH-induced activation of the pre-B?tC is influenced by focal CO(2)/H(+) chemosensitivity in this region. Furthermore, these findings suggest that focal increases in pre-B?tC CO(2)/H(+) may have contributed to the modulation of the DLH-induced responses previously observed during systemic hypercapnia.  相似文献   

9.
Prebiotic synthesis in atmospheres containing CH4, CO,and CO2   总被引:2,自引:0,他引:2  
The prebiotic synthesis of organic compounds using a spark discharge on various simulated primitive earth atmospheres at 25 degrees C has been studied. Methane mixtures contained H2 + CH4 + H2O + N2 + NH3 with H2/CH4 molar ratios from 0 to 4 and pNH3 = 0.1 torr. A similar set of experiments without added NH3 was performed. The yields of amino acids (1.2 to 4.7% based on the carbon) are approximately independent of the H2/CH4 ratio and whether NH3 was present, and a wide variety of amino acids are obtained. Mixtures of H2 + CO + H2O + N2 and H2 + CO2 + H2O + N2, with and without added NH3, all gave about 2% yields of amino acids at H2/CO and H2/CO2 ratios of 2 to 4. For a H2/CO2 ratio of 0, the yield of amino acids is extremely low (10(-3)%). Glycine is almost the only amino acid produced from CO and CO2 model atmospheres. These results show that the maximum yield is about the same for the three carbon sources at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. In addition, CH4 gives a much greater variety of amino acids than either CO or CO2. If it is assumed that an abundance of amino acids more complex than glycine was required for the origin of life, then these results indicate the requirement for CH4 in the primitive atmosphere.  相似文献   

10.
Central nervous system (CNS) oxygen toxicity, as manifested by the first electrical discharge (FED) in the electroencephalogram, can occur as convulsions and loss of consciousness. CO(2) potentiates this risk by vasodilation and pH reduction. We suggest that CO(2) can produce CNS oxygen toxicity at a PO(2) that does not on its own ultimately cause FED. We searched for the CO(2) threshold that will result in the appearance of FED at a PO(2) between 507 and 253 kPa. Rats were exposed to a PO(2) and an inspired PCO(2) in 1-kPa steps to define the threshold for FED. The results confirmed our assumption that each rat has its own PCO(2) threshold, any PCO(2) above which will cause FED but below which no FED will occur. As PO(2) decreased from 507 to 456, 405, and 355 kPa, the percentage of rats that exhibited FED without the addition of CO(2) (F(0)) dropped from 91 to 62, to 8 and 0%, respectively. The percentage of rats (F) having FED as a function of PCO(2) was sigmoid in shape and displaced toward high PCO(2) with the reduction in PO(2). The following formula is suggested to express risk as a function of PCO(2) and PO(2) [abstract: see text] where P(50) is the PCO(2)for the half response and N is power. A small increase in PCO(2) at a PO(2) that does not cause CNS oxygen toxicity may shift an entire population into the risk zone. Closed-circuit divers who are CO(2)retainers or divers who have elevated inspired CO(2)are at increased risk of CNS oxygen toxicity.  相似文献   

11.
Avian intrapulmonary chemoreceptors (IPC) are vagal respiratory afferents that are inhibited by high lung Pco(2) and excited by low lung Pco(2). Previous work suggests that increased CO(2) inhibits IPC by acidifying intracellular pH (pH(i)) and that pH(i) is determined by a kinetic balance between the rate of intracellular carbonic anhydrase-catalyzed CO(2) hydration/dehydration and transmembrane extrusion of acids and/or bases by various exchangers. Here, the role of amiloride-sensitive Na(+)/H(+) exchange (NHE) in the IPC CO(2) response was tested by recording single-unit action potentials from IPC in anesthetized ducks, Anas platyrhynchos. For each of the IPC tested, blockade of the NHE using dimethyl amiloride (DMA) elicited a marked (>50%) dose-dependent decrease in mean IPC discharge (P < 0.05), suggesting that NHE is important for pH(i) regulation and CO(2) transduction in IPC. In addition, activation of the NHE using 12-O-tetradecanoylphorbol 13-acetate stimulated six of the seven IPC tested, although the overall effect was not statistically significantly (P = 0.07). Taken together, these findings suggest that CO(2) transduction in IPC is dependent on transmembrane NHE although it is likely to be much slower than carbonic anhydrase-catalyzed hydration-dehydration of CO(2).  相似文献   

12.
The dependence of the CO2 concentration on the discharge conditions and the mixture composition in a CO laser is studied experimentally. The experimental data are compared with the calculated results. A scheme of the reactions that govern the concentration of CO2 molecules under the experimental conditions in question is constructed. It is shown that, in a gas-discharge plasma, an admixture of Xe in a mixture containing CO molecules gives rise to a new mechanism for the dissociation of CO2 molecules by metastable xenon atoms. Under conditions close to the operating conditions of sealed-off CO lasers, the dissociation of CO2 molecules in collisions with metastable. Xe(3P2) atoms becomes the dominant dissociation mechanism in a He: CO mixture because it proceeds at a fast rate. This explains the observed decrease in the CO2 concentration in a xenon-containing He: CO mixture.  相似文献   

13.
These studies investigated the role of the intermediate area of the ventral surface of the medulla (VMS) in the tracheal constriction produced by hypercapnia. Experiments were performed in chloralose-anesthetized, paralyzed, and artificially ventilated cats. Airway responses were assessed from pressure changes in a bypassed segment of the rostral cervical trachea. Hyperoxic hypercapnia increased tracheal pressure and phrenic nerve activity. Intravenous atropine pretreatment or vagotomy abolished the changes in tracheal pressure without affecting phrenic nerve discharge. Rapid cooling of the intermediate area reversed the tracheal constriction produced by hypercapnia. Graded cooling produced a progressive reduction in the changes in maximal tracheal pressure and phrenic nerve discharge responses caused by hypercapnia. Cooling the intermediate area to 20 degrees C significantly elevated the CO2 thresholds of both responses. These findings demonstrate that structures near the intermediate area of the VMS play a role in the neural cholinergic responses of the tracheal segment to CO2. It is possible that neurons or fibers in intermediate area influence the motor nuclei innervating the trachea. Alternatively, airway tone may be linked to respiratory motor activity so that medullary interventions that influence respiratory motor activity also alter bronchomotor tone.  相似文献   

14.
Yields based on carbon are usually reported in prebiotic experiments, while energy yields (moles cal–1) are more useful in estimating the yields of products that would have been obtained from the primitive atmosphere of the earth. Energy yields for the synthesis of HCN and H2CO from a spark discharge were determined for various mixtures of CH4, CO, CO2, H2, H2O, N2 and NH3. The maximum yields of HCN and H2CO from CH4, CO, and CO2 as carbon sources are about 4×10–8 moles cal–1.  相似文献   

15.
This study examines the effects of lung inflation/deflation with and without CO2 on the entire population of pulmonary receptors in the vagus nerve in two species of snakes and two species of turtles. We asked the question, "how does the response of the entire mixed population of pulmonary stretch receptors (PSR) and intrapulmonary chemoreceptors (IPC) in species possessing both differ from that in species with only PSR"? This was studied under conditions of artificial ventilation with the secondary goal of extending observations on the presence/absence of IPC to a further three species. Our results indirectly illustrate the presence of IPC in the Burmese python and South American rattlesnake but not the side necked turtle, adding support to the hypothesis that IPC first arose in diapsid reptiles. In both species of snake, CO2-sensitive discharge (presumably from IPC) predominated almost to the exclusion of CO2-insensitive discharge (presumably arising from PSR) while the opposite was true for both species of turtle. The data suggest that for animals breathing air under conditions of normal metabolism there is little to distinguish between the discharge profiles of the total population of receptors arising from the lungs in the different groups. Interestingly, however, under conditions of elevated environmental CO2 most volume-related feedback from the lungs is abolished in the two species of snakes, while under conditions of elevated metabolic CO2, it is estimated that volume feedback from the lungs would be enhanced in these same species.  相似文献   

16.
Abstrac The processes of dissociation and recombination of CO molecules in the plasmas of discharges in He/CO and He/CO/Xe mixtures under conditions characteristic of sealed-off CO lasers are investigated. The concentrations of CO molecules and the main products of their dissociation—O and C atoms and CO2 molecules—are measured simultaneously for the first time, and the time evolution of the initial working mixture composition in the discharge is calculated. It is shown that the main channel for the regeneration of CO molecules in a sealed-off discharge is the heterogeneous recombination of C and O atoms. The rate constants for this process are estimated. __________ Translated from Fizika Plazmy, Vol. 30, No. 9, 2004, pp. 845–854. Original Russian Text Copyright ? 2004 by Grigorian, Kochetov.  相似文献   

17.
A one-dimensional model of an RF discharge in CO-containing gas mixtures is developed. The model takes into account the effect of the degree of vibrational excitation of CO molecules on the structure of the discharge and on its parameters. Experimental data are presented from measurements of the voltage-power characteristics of RF discharges in gas mixtures with different CO contents in the pressure range of 10–100 torr. The model developed is used to calculate the dependence of the root-mean-square discharge voltage on the specific power deposition in an RF discharge under our experimental conditions. The experimental data are compared to the results of numerical simulations. For working gas pressures of about 100 torr, which are typical of the operation of slab CO lasers, the calculated voltage-power characteristics of an RF discharge agree satisfactorily with those obtained experimentally. The theoretical model predicts that the vibrational excitation of CO molecules leads to a redistribution of the RF field in the discharge gap and to an increase in the laser efficiency.  相似文献   

18.
Fetal CO2 kinetics   总被引:1,自引:0,他引:1  
Knowledge of CO2 kinetics in the fetus is important for the design and interpretation of fetal metabolic studies that use carbon-labelled tracers. To study fetal CO2 kinetics, four fetal sheep were infused at constant rate with NaH14CO3 to simulate a constant rate of fetal 14CO2 production from the metabolism of a 14C-labelled substrate. Uterine and umbilical blood flows, and concentrations of 14CO2 and total CO2 in umbilical arterial and venous blood and in uterine arterial and venous blood were measured. During steady state, the excretion of 14CO2 via the umbilical circulation was 99.6 +/- 1.0 (SEM)% of the NaH14CO3 infusion rate. The irreversible disposal rate of CO2 molecules from the fetal CO2 pool was approximately 5 times greater than the metabolic production of CO2 by the fetus. This evidence demonstrates that measurements of fetal 14CO2 excretion via the umbilical circulation can provide an accurate measurement of fetal 14CO2 production and that the exchange rate of CO2 molecules between placenta and fetal blood is much greater than the net rate of excretion of CO2 molecules from fetus to placenta.  相似文献   

19.
Cell suspensions of Methanobacterium thermoautotrophicum were found to reduce CO2 with H2 to CO at a maximal rate of 100 nmol X min-1 X mg protein-1. Half-maximal rates were obtained at a H2 and a CO2 concentration in the gas phase of 10% and 30%, respectively. The CO concentration in the gas phase surpassed the equilibrium concentration by a factor of more than 15 which indicates that CO2 reduction with H2 to CO was energy-driven. This was substantiated by the observation that the cells only formed CO when they also generated methane and that CO formation was completely inhibited by uncouplers. CO formation by cell suspensions and by growing cells was inhibited by cyanide. Neither methane formation nor the electrochemical proton potential were affected by this inhibitor. Cyanide was shown to inactivate specifically the carbon monoxide dehydrogenase present in M. thermoautotrophicum. It is therefore concluded that reduction of CO2 to CO is catalyzed by this enzyme. CO production by growing cells was 5-10-times slower than by resting cells. This is explained by effective CO assimilation in growing cells; when CO assimilation was inhibited by propyl iodide the rate of CO production immediately increased more than tenfold.  相似文献   

20.
The possible role of intrapulmonary CO2 receptors (IPC) in arterial CO2 partial pressure (PaCO2) homeostasis was investigated by comparing the arterial blood gas and ventilatory responses to CO2 loading via the inspired gas and via the venous blood. Adult male Pekin ducks were decerebrated 1 wk prior to an experiment. Venous CO2 loading was accomplished with a venovenous extracorporeal blood circuit that included a silicone-membrane blood oxygenator. The protocol randomized four states: control (no loading), venous CO2 loading, inspired CO2 loading, and venous CO2 unloading. Intravenous and inspired loading both resulted in hypercapnic hyperpnea. Comparison of the ventilatory sensitivity (delta VE/delta PaCO2) showed no significant difference between the two loading regimes. Likewise, venous CO2 unloading led to a significant hypocapnic hypopnea. Sensitivity to changes in PaCO2 could explain the response of ventilation under these conditions. The ventilatory pattern, however, was differentially sensitive to the route of CO2 loading; inspired CO2 resulted in slower deeper breathing than venous loading. It is concluded that IPC play a minor role in adjusting ventilation to match changes in pulmonary CO2 flux but rather are involved in pattern determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号