首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To investigate the chemical characterization of the mucilage sheath produced by Chlorella sorokiniana. METHODS AND RESULTS: Algal mucilage sheath was hydrolysed with NaOH, containing EDTA. The purity of the hydrolysed sheath was determined by an ATP assay. The composition of polysaccharide in the sheath was investigated by high-performance anion-exchange chromatography with pulsed amperometric detection. Sucrose, galacturonic acid, xylitol, inositol, ribose, mannose, arabinose, galactose, rhamnose and fructose were detected in the sheath as sugar components. Magnesium was detected in the sheath as a divalent cation using inductively coupled argon plasma. The sheath matrix also contained protein. CONCLUSIONS: It appears that the sheath is composed of sugars and metals. Mucilage sheath contains many kinds of saccharides that are produced as photosynthetic metabolites and divalent cations that are contained in the culture medium. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on chemical characterization of the sheath matrix produced by C. sorokiniana.  相似文献   

2.
The sheath of Sphaerotilus natans is composed of cysteine-rich peptide and polysaccharide moieties. The polysaccharide was prepared by treating the sheath with hydrazine, and was determined to be a mucopolysaccharide containing beta-D-GlcA, beta-D-Glc, alpha-D-GalN, and beta-D-GalN. To elucidate the structure of the peptide, the sheath was labeled with a thiol-selective fluorogenic reagent, 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole. Enantiomeric determination of the S-derivatized Cys in the fluorescent sheath suggested that it contained L-Cys mainly. Fluorescent cysteinylglycine was detected in the partial acid hydrolysate of the fluorescent sheath. The sheath-degrading enzyme secreted by Paenibacillus koleovorans produced a fluorescent disaccharide-dipeptide composed of GalN, Gly, and N-acetylated Cys from the fluorescent sheath. The disaccharide and dipeptide moieties were found to be connected by an amide bond. Based on these results, the sheath was deduced to be formed by association of a mucopolysaccharide modified with N-acetyl-L-cysteinylglycine.  相似文献   

3.
4.
The infective third-stage juvenile of Trichostrongylus colubriformis is surrounded by its own cuticle as well as the incompletely moulted cuticle of the second-stage juvenile, which is referred to as the sheath. The sheath comprises an outer epicuticle, an amorphous cortical zone, a fibrous basal zone and an inner electron-dense layer. The basal zone of the sheath consists of three layers of fibres; the fibres are parallel within each layer, but the fibre direction of the middle layer is at an angle to that of the inner and outer layers. The cuticle comprises a complex outer epicuticle, an amorphous cortical zone and a striated basal zone. The lateral alae of the cuticle and the sheath are aligned and overlie the lateral hypodermal cords. The lateral alae of the sheath consist of two wing-like expansions of the cortical zone with associated specializations of the inner electron-dense layer which form a groove. The cuticular lateral alae consist of two tube-like expansions of the cortical zone. The lateral alar complex of the cuticle and the sheath may maximise locomotory efficiency and prevent rotation of the juvenile within the sheath.  相似文献   

5.
The neural fat-body sheath surrounding the abdominal ventral nerve cord of Carausius morosus has been examined by light and electron microscopy. A perineural chamber between the ventral nerve cord and the sheath is present in the ganglionic regions, but in the interconnective regions the sheath directly covers the neural lamella. The sheath is differentiated into secretory cells with abundant granular endoplasmic reticulum and many mitochondria and storage cells with lipid droplets and granules presumed to be glycogen. The whole sheath is pervaded with tracheoblast cells and associated tracheal and tracheolar tubules. Recent evidence suggests that this sheath may have little power of ionic regulation. The function of the sheath, deduced from the fine structure described here, appears to be to serve the nutritional needs of the central nervous system. Why a sheath of this type appears to be confined to herbivorous insects with unusual haemolymph cationic balance is still unexplained.  相似文献   

6.
Proteins can be extracted from the slime sheath of Dictyostelium discoideum slugs by denaturing agents. A subset of these proteins is also released by cellulase digestion of the sheath, implying that protein-protein and protein-cellulose interactions are involved in sheath protein retention. It seems probable that the cellulose-associated sheath proteins are also associated with the cellulose of mature stalk cells. Monoclonal antibodies directed against sheath demonstrate extensive sharing of antigenic determinants between sheath proteins and a limited degree of antigenic sharing between sheath and slug cell proteins. All of the proteins recognised by these monoclonal antibodies are developmentally regulated. These results are discussed in terms of the structure of the sheath and its possible role(s) in D. discoideum development.  相似文献   

7.
Abstract— RNA and DNA were determined in the axoplasm and sheath of squid giant axons. If the RNA was related to axonal length, equivalent amounts of RNA were found in the axoplasm and sheath. However, when it was expressed as a function of dry wt. or residue protein, the concentration of RNA in the sheath was four times greater than in the axoplasm. A ratio of 1·1 was found for sheath RNA/sheath DNA. Less DNA was present in the axoplasm than the amount which could be accurately determined with the methods employed.  相似文献   

8.
A model is developed for simulating a low-current moderate-pressure RF discharge with allowance for such characteristic discharge properties as the existence of two sheaths near both electrodes throughout the RF field period; the formation of an electron cloud at the sheath boundary that periodically fills the sheath and leaves it, depending on the phase of the applied RF voltage; the production by the sheath electrons of metastable gas particles that interact with the cloud electrons during subsequent field periods, followed by the excitation of metastable states to the emitting levels; the formation of a sheath in a low-current RF discharge due to the overlap of the secondary electron avalanches triggered by electron photoemission from the electrode surface; and the conditions under which the sheath electrons penetrate into the positive column and accumulate there, which makes, thereby making a low-current RF discharge similar to a non-self-sustained discharge. The parameters of the sheath in a low-current RF discharge are determined by the conditions under which the electron photoemission current from the electrode surface in the sheath is self-sustaining and, like the parameters of the positive discharge column, depend on the sort of gas, the gas pressure, the frequency of the applied RF field, and the interelectrode distance. The results of calculating the parameters of the sheath and column of a low-current RF discharge for nitrogen and helium at different pressures, as well as for different field frequencies and interelectrode distances, are presented and are compared with the experimental data.  相似文献   

9.
10.
The reassociation of the monomeric sheath protein, the product of gene 18, with the core-baseplate was investigated by analytical ultracentrifugation, light-scattering and electron microscopy.The following conclusions are reached: (1) monomeric P18 molecules are in equilibrium with the extended tail sheath; (2) the association process is co-operative and the critical concentration of P18 is about 0.4 μm in the presence of 0.1 m-KCl in 1 mm-potassium phosphate buffer (pH 7.0 at 20 °C); (3) binding of P18 to the baseplate-core junction is the initial stop in extended sheath formation; (4) slow, irreversible polysheath formation competes with the assembly of extended sheath, but the latter is kinetically much more favored.Model calculations on the isotherm of the sheath formation and on the length distribution strongly suggest a rate-limiting nucleation step, and a distinctly strong binding of the last annulus of the sheath to the core-baseplate.  相似文献   

11.
Treatment of the Methanospirillum hungatei GP1 sheath with 90% (wt/vol) phenol resulted in the solubilization of a novel phenol-soluble group of polypeptides. These polypeptides were purified by the removal of insoluble material by ultracentrifugation and represented approximately 19% of the mass of the sheath. The phenol-insoluble material resembled untreated sheath but had lost its rigidity and cylindrical form. Recombination of phenol-soluble and phenol-insoluble fractions by dialysis to remove phenol resulted in cylindrical reassembly products. Although bona fide sheath (complete with the 2.8-nm lattice) was not produced, a role for the phenol-soluble polypeptides in the maintenance of sheath rigidity is implied. The phenol-soluble polypeptides have limited surface exposure as detected by antibodies on intact sheath; therefore, they are not responsible for the 2.8-nm repeat occurring on the outer face of the sheath. However, longitudinal and transverse linear labeling by protein A-colloidal gold on the outer and inner faces, respectively, occurred with monoclonal antibodies specific to the phenol-soluble polypeptides. Restricted surface exposure of phenol-soluble polypeptides on the sheath highlighted molecular defects in sheath architecture. These lattice faults may indicate sites of sheath growth to accommodate cell growth or division (longitudinal immunogold label) and filament division (transverse immunogold label). The identification of a second group of polypeptides within the infrastructure of the sheath suggests that the sheath is a trilaminar structure in which phenol-soluble polypeptides are sandwiched between sodium dodecyl sulfate-beta-mercaptoethanol-EDTA-soluble polypeptides (G. Southam and T. J. Beveridge, J. Bacteriol. 173:6213-6222, 1991) (phenol-insoluble material).  相似文献   

12.
13.
Genetic and embryological experiments have established the Caenorhabditis elegans adult hermaphrodite gonad as a paradigm for studying the control of germline development and the role of soma-germline interactions. We describe ultrastructural features relating to essential germline events and the soma-germline interactions upon which they depend, as revealed by electron and fluorescence microscopy. Gap junctions were observed between oocytes and proximal gonadal sheath cells that contract to ovulate the oocyte. These gap junctions must be evanescent since individual oocytes lose contact with sheath cells when they are ovulated. In addition, proximal sheath cells are coupled to each other by gap junctions. Within proximal sheath cells, actin/myosin bundles are anchored to the plasma membrane at plaque-like structures we have termed hemi-adherens junctions, which in turn are closely associated with the gonadal basal lamina. Gap junctions and hemi-adherens junctions are likely to function in the coordinated series of contractions required to ovulate the mature oocyte. Proximal sheath cells are fenestrated with multiple small pores forming conduits from the gonadal basal lamina to the surface of the oocyte, passing through the sheath cell. In most instances where pores occur, extracellular yolk particles penetrate the gonadal basal lamina to directly touch the underlying oocytes. Membrane-bounded yolk granules were generally not found in the sheath cytoplasm by either electron microscopy or fluorescence microscopy. Electron microscopic immunocytochemistry was used to confirm and characterize the appearance of yolk protein in cytoplasmic organelles within the oocyte and in free particles in the pseudocoelom. The primary route of yolk transport apparently proceeds from the intestine into the pseudocoelom, then through sheath pores to the surface of the oocyte, where endocytosis occurs. Scanning electron microscopy was used to directly visualize the distal tip cell which extends tentacle-like processes that directly contact distal germ cells. These distal tip cell processes are likely to play a critical role in promoting germline mitosis. Scanning electron microscopy also revealed thin filopodia extending from the distal sheath cells. Distal sheath filopodia were also visualized using a green fluorescent protein reporter gene fusion and confocal microscopy. Distal sheath filopodia may function to stretch the sheath over the distal arm.  相似文献   

14.
Aggregates of Dictyostelium discoideum are surrounded by a surface sheath which functions to maintain polarity and integrity during development. We have isolated and partially characterized a component of the surface sheath. It is composed of 60% cellulose, 15% protein, 3% heteropolysaccharide (heteropolymer), 5% lipid, and 1% sulfate when isolated from migrating slugs. The sheath, isolated from aggregates prior to tip formation, has less protein, a different heteropolymer, and cellulose of a lower crystallinity than the sheath of migrating slugs. The increase in crystallinity of the cellulose during development may be important in determining the strength of the surface sheath.  相似文献   

15.
A model is developed for calculating a low-current moderate-pressure RF discharge with allowance for an electron cloud that is formed by electrons produced during the preceding periods of the RF field and fills the electrode sheath at regular intervals in accordance with the phase of the RF voltage applied to the electrodes. The cloud arises due to a phase shift of π/2 between the voltage across the sheath and that across the column of a low-current RF discharge plasma. The photon generation mechanism is as follows: as the cloud electrons fill the sheath, they acquire energy in superelastic collisions with metastables produced by the sheath electrons during the preceding periods of the RF field and then excite the metastable states to emitting levels. The discharge sheath forms due to the overlap of the secondary electron avalanches triggered by electron photoemission from the electrode surface. The parameters of the sheath in a low-current RF discharge are determined by the conditions under which the electron photoemission current in the sheath is self-sustaining, but the capacitive susceptance of the sheath is substantially higher than its active electrical conductance. The results of calculations are compared with the experimental data.  相似文献   

16.
Summary The cytopharyngeal sheath in the ciliate Nassula is a long hollow tube-shaped microtubule bundle that forms part of a large feeding organelle called the cytopharyngeal basket. During the initial stages of ingestion of algal filaments by Nassula the sheath is stretched, becomes approximately elliptical in cross-section, and its external cross-sectional perimeter increases by a factor of about two. The mean circumferential centre-to-centre spacing of radially oriented rows of sheath tubules increases from 57 to 137nm during stretching but sheath thickness and the radial spacing of sheath tubules do not change appreciably. It is suggested that extensible circumferentially oriented intertubule links and relatively inextensible radial links may define the anisometric mechanical properties of this particular microtubule bundle which are related to its cytoskeletal role. The possibility that extensible links resist stretching elastically and provide the restoring forces for return of the sheath to its former shape and dimensions after stretching is considered.Supported by the Science Research Council, U.K. (Grant nos. B/RG/5894.5 and GR/A/0875.8)  相似文献   

17.
Factors concerning the chloroplast disposition in bundle sheathcells were investigated in finger millet (Eleusine coracanaGaertn.), and NAD malic enzyme type C4 plant with the centripetalarrangement of bundle sheath chloroplasts. Segments were cutfrom immature regions of emerging leaves in which the centripetalarrangement of bundle sheath chloroplasts had not yet been established.The leaf segments were floated on solutions with or withoutreagents. Sections were made of the segments at time intervalsand the distribution of bundle sheath chloroplasts was observedby light microscopy. The bundle sheath chloroplasts migratedto the vascular bundle and established a centripetal arrangementby 12-16 h in control solutions. Auxins, cycloheximide and cytochalasinB inhibited the disposition of bundle sheath chloroplasts whilechloramphenicol and colchicine had no effect. The inhibitoryeffect of auxins appeared only at early stages of chloroplastmigration while cycloheximide and cytochalasin B were effectiveeven at later stages. Cessation of elongation growth, cytoplasmicprotein synthesis and microfilaments seemed to be associatedwith the centripetal disposition of bundle sheath chloroplasts.Copyright1993, 1999 Academic Press Bundle sheath chloroplast, C4 plant, chloroplast orientation, Eleusine coracana, finger millet  相似文献   

18.
Bacteriophage phiKZ is a giant phage that infects Pseudomonas aeruginosa, a human pathogen. The phiKZ virion consists of a 1450?? diameter icosahedral head and a 2000??-long contractile tail. The structure of the whole virus was previously reported, showing that its tail organization in the extended state is similar to the well-studied Myovirus bacteriophage T4 tail. The crystal structure of a tail sheath protein fragment of phiKZ was determined to 2.4?? resolution. Furthermore, crystal structures of two prophage tail sheath proteins were determined to 1.9 and 3.3?? resolution. Despite low sequence identity between these proteins, all of these structures have a similar fold. The crystal structure of the phiKZ tail sheath protein has been fitted into cryo-electron-microscopy reconstructions of the extended tail sheath and of a polysheath. The structural rearrangement of the phiKZ tail sheath contraction was found to be similar to that of phage T4.  相似文献   

19.
Salivary secretions, including gel saliva and watery saliva, play crucial roles in the interaction between the insect and plant during feeding. In this study, we identified a salivary gland-specific gene encoding a salivary sheath protein (NlShp) in Nilaparvata lugens. NlShp has two alternative splicing variants; both are expressed at high levels during the nymph and adult stages. Immunohistochemical staining showed that the NlShp were synthesized in the principal gland cells of the salivary gland. LC-MS/MS and western blot analysis confirmed that NlShp was one of the components of the salivary sheath. Simultaneously knocking down the two NlShp variants by RNA interference inhibited both salivary flange and salivary sheath formation and resulted in a lethal phenotype within four days for the brown planthopper (BPH) feeding on rice plants, indicating that the salivary sheath and salivary flanges were essential for plant-associated feeding. Despite the salivary sheath deficiency, no obvious phenotype was observed in the NlShp-knockdown BPHs fed on artificial diet. The electrical penetration graph (EPG) results showed that salivary sheath-deficient BPHs exhibited a prolonged nonpenetration period, scarce sap period, and increased stylet movement on rice plants and eventually starved to death. Our results provided evidence that the interaction between the salivary sheath and host plant might be a critical step in successful BPH feeding. According to present research, we propose a salivary sheath required feeding model for piercing-sucking insects and provide a potential target for rice planthopper management.  相似文献   

20.
Structure and permeability of the fungal sheath in thePisonia mycorrhiza   总被引:1,自引:0,他引:1  
Summary The tracer Cellufluor has been used to test the apoplastic permeability of the fungal sheath inPisonia grandis R. Br. mycorrhizas. In the tip region in the immediate vicinity of the root cap, where the sheath is not yet fully differentiated, Celluflor penetrates as far as the root epidermal cells. Behind this (i.e. just proximal to it) in differentiated regions, where the ultrastructure of both the root and fungal cells indicates that the mycorrhiza is likely to be functionally active, the sheath is impermeable to Cellufluor. During the development and differentiation of the sheath, the interhyphal spaces become filled with extracellular material. In the outer and middle regions this becomes electron opaque after fixation and staining. It is proposed that the dramatic decrease in apoplastic permeability over a short distance back from the root apex as the fungal sheath differentiates results from secretion of extracellular material by the fungus and its modification by deposition of phenolic substances. The symplastic pathway within the fungus may be very important for radial transfer of materials across the sheath. Blockage of the sheath apoplast could provide a sealed apoplastic compartment at the fungus-root interface, with resulting increase in efficiency of transfer between partners. The implications of these observations are discussed in relation to radial transfer across the sheath and transfer between partners in sheathing mycorrhizas in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号