首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

MicroRNA (miRNA) expression is broadly altered in cancer, but few studies have investigated miRNA deregulation in oral squamous cell carcinoma (OSCC). Epigenetic mechanisms are involved in the regulation of >30 miRNA genes in a range of tissues, and we aimed to investigate this further in OSCC.

Methods

TaqMan® qRT-PCR arrays and individual assays were used to profile miRNA expression in a panel of 25 tumors with matched adjacent tissues from patients with OSCC, and 8 control paired oral stroma and epithelium from healthy volunteers. Associated DNA methylation changes of candidate epigenetically deregulated miRNA genes were measured in the same samples using the MassArray® mass spectrometry platform. MiRNA expression and DNA methylation changes were also investigated in FACS sorted CD44high oral cancer stem cells from primary tumor samples (CSCs), and in oral rinse and saliva from 15 OSCC patients and 7 healthy volunteers.

Results

MiRNA expression patterns were consistent in healthy oral epithelium and stroma, but broadly altered in both tumor and adjacent tissue from OSCC patients. MiR-375 is repressed and miR-127 activated in OSCC, and we confirm previous reports of miR-137 hypermethylation in oral cancer. The miR-200 s/miR-205 were epigenetically activated in tumors vs normal tissues, but repressed in the absence of DNA hypermethylation specifically in CD44high oral CSCs. Aberrant miR-375 and miR-200a expression and miR-200c-141 methylation could be detected in and distinguish OSCC patient oral rinse and saliva from healthy volunteers, suggesting a potential clinical application for OSCC specific miRNA signatures in oral fluids.

Conclusions

MiRNA expression and DNA methylation changes are a common event in OSCC, and we suggest miR-375, miR-127, miR-137, the miR-200 family and miR-205 as promising candidates for future investigations. Although overall activated in OSCC, miR-200/miR-205 suppression in oral CSCs indicate that cell specific silencing of these miRNAs may drive tumor expansion and progression.  相似文献   

2.

Background

The Maillard reaction is a chemical reaction occurring between a reducing sugar and an amino acid, generally requiring thermal processing. Maillard reaction products (MRPs) have antioxidant, antimutagenic, and antibacterial effects though 2,4-bis (p-hydroxyphenyl)-2-butenal (HPB242), a fructose-tyrosine MRP, appears to inhibit proliferation of cancer cells, its mechanism of action has not been studied in detail. The purpose of this study was to investigate the anti-proliferative effects of 2,4-bis (p-hydroxyphenyl)-2-butenal (HPB242) on two oral squamous cell carcinoma (OSCC) cell lines, HN22 and HSC4, through regulation of specificity protein 1 (Sp1).

Results

HPB242 treatment dramatically reduced the cell growth rate and apoptotic cell morphologies. Sp1 was significantly inhibited by HPB242 in a dose-dependent manner. Furthermore, cell cycle regulating proteins and anti-apoptotic proteins, which are known as Sp1 target genes, were altered at the molecular levels. The key important regulators in the cell cycle such as p27 were increased, whereas cell proliferation- and survival-related proteins such as cyclin D1, myeloid leukemia sequence 1 (Mcl-1) and survivin were significantly decreased by HPB242 or suppressed Sp1 levels, however pro-apoptotic proteins caspase3 and PARP were cleaved in HN22 and HSC4.

Conclusions

HPB242 may be useful as a chemotherapeutic agent for OSCC for the purpose of treatment and prevention of oral cancer and for the improvement of clinical outcomes.  相似文献   

3.
4.
5.

Objective

Oral squamous cell carcinoma (OSCC) is a prevalent cancer, especially in developing countries. Anthracyclines and their anthraquinone derivatives, such as doxorubicin, exhibit a cell growth inhibitory effect and have been used as anti-cancer drugs for many years. However, the cardiotoxicity of anthracycline antibiotics is a major concern in their clinical application. NSC745885 is a novel compound synthesized from 1,2-diaminoanthraquinone, which subsequently reacts with thionyl chloride and triethylamine. The present study aimed to investigate the anti-oral cancer potential and the safety of NSC745885.

Methods

We investigated the anti-cancer potential of NSC745885 in oral squamous carcinoma cell lines and in an in vivo oral cancer xenograft mouse model. The expression of apoptotic related genes were evaluated by real-time RT-PCR and western bloting, and the in vivo assessment of apoptotic marker were measured by immunohistochemical staining. The anti-tumor efficiency and safety between doxorubicin and NSC745885 were also compared.

Results

Our results demonstrated that NSC745885 exhibits anti-oral cancer activity through the induction of apoptosis in cancer cells and in tumor-bearing mice, and this treatment did not induce marked toxicity in experimental mice. This compound also exhibits a comparable anti-tumor efficiency and a higher safety in experimental mice when compared to doxorubicin.

Conclusions

The data of this study provide evidence for NSC745885 as a potential novel therapeutic drug for the treatment of human OSCC.  相似文献   

6.

Background

Oral squamous cell carcinoma (OSCC) is one of the most common malignant neoplasms in Taiwan. Activation of the mTOR signaling pathway has been linked to decreased radiation responsiveness in human oral cancer, thus it limits efficacy of radiotherapy. To address this question, we investigated the effect of AZD2014, a novel small molecular ATP-competitive inhibitor of mTORC1 and mTORC2 kinase, as a radiosensitizer in primary OSCC and OSCC-derived cell line models.

Methods

We isolated primary tumor cells from OSCC tissues and cell lines. AZD2014 was administered with and without ionizing radiation. The radiosensitizing effect of AZD2014 were then assessed using cell viability assays, clonogenic survival assays, and cell cycle analyses. Western blotting was used to detect protein expression.

Results

Combination treatment with AZD2014 and irradiation resulted in significant reduction in OSCC cell line and primary OSCC cell colony formation due to the enhanced inhibition of AKT and both mTORC1 and mTORC2 activity. Pre-treatment with AZD2014 in irradiated oral cancer cells induced tumor cell cycle arrest at the G1 and G2/M phases, which led to disruption of cyclin D1-CDK4 and cyclin B1-CDC2 complexes. Moreover, AZD2014 synergized with radiation to promote both apoptosis and autophagy by increasing caspase-3 and LC3 in primary OSCC cells.

Conclusions

These findings suggest that in irradiated OSCC cells, co-treatment with AZD2014, which targets mTORC1 and mTORC2 blockade, is an effective radiosensitizing strategy for oral squamous cell carcinoma.  相似文献   

7.

Background

Keratins are structural marker proteins with tissue specific expression; however, recent reports indicate their involvement in cancer progression. Previous study from our lab revealed deregulation of many genes related to structural molecular integrity including KRT76. Here we evaluate the role of KRT76 downregulation in oral precancer and cancer development.

Methods

We evaluated KRT76 expression by qRT-PCR in normal and tumor tissues of the oral cavity. We also analyzed K76 expression by immunohistochemistry in normal, oral precancerous lesion (OPL), oral squamous cell carcinoma (OSCC) and in hamster model of oral carcinogenesis. Further, functional implication of KRT76 loss was confirmed using KRT76-knockout (KO) mice.

Results

We observed a strong association of reduced K76 expression with increased risk of OPL and OSCC development. The buccal epithelium of DMBA treated hamsters showed a similar trend. Oral cavity of KRT76-KO mice showed preneoplastic changes in the gingivobuccal epithelium while no pathological changes were observed in KRT76 negative tissues such as tongue.

Conclusion

The present study demonstrates loss of KRT76 in oral carcinogenesis. The KRT76-KO mice data underlines the potential of KRT76 being an early event although this loss is not sufficient to drive the development of oral cancers. Thus, future studies to investigate the contributing role of KRT76 in light of other tumor driving events are warranted.  相似文献   

8.

Background

Thymoquinone (TQ), an active component of Nigella sativa or black cumin, elicits cytotoxic effects on various cancer cell lines. However, the anti-cancer effects of TQ on head and neck squamous cell carcinoma (HNSCC) remain unclear.

Methodology/Principal Findings

In this study, TQ elicited a strong cytotoxic effect on SASVO3, a highly malignant HNSCC cell line. The mechanisms of this cytotoxic effect were concentration dependent. TQ also induced apoptotic cell death in SASVO3 cells as indicated by an increase in Bax expression and caspase-9 activation. Apoptosis was possibly caspase-9 dependent because the exposure of cells to a caspase-9 inhibitor partially prevented cell death. The exposed cells also showed increased levels of autophagic vacuoles and LC3-II proteins, which are specific autophagy markers. Cell viability assay results further revealed that bafilomycin-A1, an autophagy inhibitor, enhanced TQ cytotoxicity; by comparison, Annexin V and propidium-iodide staining assay results showed that this inhibitor did not promote apoptosis. TQ treatment also increased the accumulation of autophagosomes. Using a lentivirus-shRNA system for LC3 silencing, we found that cell viability was eradicated in autophagy-defective cells. An in vivo BALB/c nude mouse xenograft model further showed that TQ administered by oral gavage reduced tumor growth via induced autophagy and apoptosis.

Conclusions

These findings indicated that TQ induced cell death in oral cancer cells via two distinct anti-neoplastic activities that can induce apoptosis and autophagy. Therefore, TQ is a promising candidate in phytochemical-based, mechanistic, and pathway-targeted cancer prevention strategies.  相似文献   

9.

Background

Oral squamous cell carcinoma (OSCC) is the fourth leading cause of male cancer death in Taiwan. Exposure to environmental carcinogens is the primary risk factor for developing OSCC. CD44, a well-known tumor marker, plays a crucial role in tumor cell differentiation, invasion, and metastasis. This study investigated CD44 single-nucleotide polymorphisms (SNPs) with environmental risk factors to determine OSCC susceptibility and clinicopathological characteristics.

Methodology/Principal Findings

Real-time polymerase chain reaction (PCR) was used to analyze 6 SNPs of CD44 in 599 patients with oral cancer and 561 cancer-free controls. We determined that the CD44 rs187115 polymorphism carriers with the genotype AG, GG, or AG+GG were associated with oral cancer susceptibility. Among 731 smokers, CD44 polymorphisms carriers with the betel-nut chewing habit had a 10.30–37.63-fold greater risk of having oral cancer compared to CD44 wild-type (WT) carriers without the betel-nut chewing habit. Among 552 betel-nut chewers, CD44 polymorphisms carriers who smoked had a 4.23–16.11-fold greater risk of having oral cancer compared to those who carried the WT but did not smoke. Finally, we also observed that the stage III and IV oral cancer patients had higher frequencies of CD44 rs187115 polymorphisms with the variant genotype (AG+GG) compared with the wild-type (WT) carriers.

Conclusion

Our results suggest that gene–environment interactions between the CD44 polymorphisms and betel quid chewing and tobacco smoking increase the susceptibility to oral cancer development. Patients with CD44 rs187115 variant genotypes (AG+GG) were correlated with a higher risk of oral cancer development, and these patients may possess greater chemoresistance to advanced- to late-stage oral cancer than WT carriers do. The CD44 rs187115 polymorphism has potential predictive significance in oral carcinogenesis and also may be applied as factors to predict the clinical stage in OSCC patients.  相似文献   

10.

Background

The epithelial-to-mesenchymal transition (EMT) is a key process in carcinogenesis, invasion, and metastasis of oral squamous cell carcinoma (OSCC). In our previous studies, we found that neuropilin-1 (NRP1) is overexpressed in tongue squamous cell carcinoma and that this overexpression is associated with cell migration and invasion. Nuclear factor-kappa B (NF-κB) plays an essential role both in the induction and the maintenance of EMT and tumor metastasis. Therefore, we hypothesized that NRP1 induces EMT, and that NRP1-induced migration and invasion may be an important mechanism for promoting invasion and metastasis of OSCC through NF-κB activation.

Methods/Results

The variations in gene and protein expression and the changes in the biological behavior of OSCC cell lines transfected with a vector encoding NRP1, or the corresponding vector control, were evaluated. NRP1 overexpression promoted EMT and was associated with enhanced invasive and metastatic properties. Furthermore, the induction of EMT promoted the acquisition of some cancer stem cell (CSC)-like characteristics in OSCC cells. We addressed whether selective inhibition of NF-κB suppresses the NRP1-mediated EMT by treating cells with pyrrolidinedithiocarbamate ammonium (PDTC), an inhibitor of NF-κB. Immunohistochemical analysis of NRP1 in OSCC tissue samples further supported a key mediator role for NRP1 in tumor progression, lymph node metastasis, and indicated that NRP1 is a predictor for poor prognosis in OSCC patients.

Conclusion

Our results indicate that NRP1 may regulate the EMT process in OSCC cell lines through NF-κB activation, and that higher NRP1 expression levels are associated with lymph node metastasis and poor prognosis in OSCC patients. Further investigation of the role of NRP1 in tumorigenesis may help identify novel targets for the prevention and therapy of oral cancers.  相似文献   

11.

Background

Lung cancer is the leading cause of cancer-related morbidity and mortality all over the world. Surgery resection, radiotherapy, chemotherapy, immunotherapy and combined treatments have been discovered and well established for treatments. However, low survival rate of five years after clinical treatments mainly due to recurrence of stress-resistant cancer cells calls for better understanding and new ideas. Our project aimed to understand the forming process of stress resistant lung cancer cells after radiotherapy.

Methods

Two classic non-small cell lung cancer (NSCLC) cell lines A549 and H1299 initially were radiated with a 137Cs gamma-ray source with doses ranging from 0 to 12 Gy to generate radiation-resistant cancer cells. 8 Gy of radiation was regard as a standard dosage since it provides effective killing as well as good amount of survivals. The expression levels of autophagy-related proteins including Beclin-1, LC3-II and p62 were studied and measured by both western blot and quantitative real-time polymerase chain reaction (real-time RT-PCR).

Results

Increased Beclin-1, LC3-II and decreased p62 have been observed in radiation-resistant cells indicating elevated autophagy level. Decreased miR-191 in radiation-resistant cells performed by Taqman qRT-PCR also has been seen. Two binding sites between Beclin-1 and miR-191 suggest potential association between.

Conclusions

It is reasonable to speculate that inhibition of miR-191 expression in lung cancer cells would contribute to the establishment of radiation-resistant cells via mediating cellular autophagy. Therefore, miR-191 is a potential target for therapy in treating radiation-resistant lung cancer.  相似文献   

12.
Santi SA  Lee H 《PloS one》2011,6(1):e14614

Background

Akt/PKB is a promising anticancer therapeutic target, since abnormally elevated Akt activity is directly correlated to tumor development, progression, poor prognosis and resistance to cancer therapies. Currently, the unique role of each Akt isoform and their relevance to human breast cancer are poorly understood.

Methodology/Principal Findings

We previously found that Akt1, 2 and 3 are localized at specific subcellular compartments (the cytoplasm, mitochondria and nucleus, respectively), raising the possibility that each isoform may have unique functions and employ different regulation mechanisms. By systematically studying Akt-ablated MDA-MB231 breast cancer cells with isoform-specific siRNA, we here show that Akt2 is the most relevant isoform to cell proliferation and survival in our cancer model. Prolonged ablation of Akt2 with siRNA resulted in cell-cycle arrest in G0/G1 by downregulating Cdk2 and cyclin D, and upregulating p27. The analysis of the Akt downstream signaling pathways suggested that Akt2 specifically targets and activates the p70S6K signaling pathway. We also found that Akt2 ablation initially resulted in an increase in the mitochondrial volume concomitantly with the upregulation of PGC-1α, a regulator of mitochondrial biogenesis. Prolonged ablation of Akt2, but not Akt1 or Akt3, eventually led to cell death by autophagy of the mitochondria (i.e., mitophagy).

Conclusions/Significance

Collectively, our data demonstrates that Akt2 augments cell proliferation by facilitating cell cycle progression through the upregulation of the cell cycle engine, and protects a cell from pathological autophagy by modulating mitochondrial homeostasis. Our data, thus, raises the possibility that Akt2 can be an effective anticancer target for the control of (breast) cancer.  相似文献   

13.

Background

LIM and SH3 protein 1 (LASP-1) is a specific focal adhesion protein involved in several malignant tumors. However, its role in oral squamous cell carcinoma (OSCC) is unknown. The aim of this study was to characterize the role and molecular status/mechanism of LASP-1 in OSCC.

Methods

We evaluated LASP-1 mRNA and protein expressions in OSCC-derived cell lines and primary OSCCs. Using an shRNA system, we analyzed the effect of LASP-1 on the biology and function of the OSCC cell lines, HSC-3 and Ca9-22. The cells also were subcutaneously injected to evaluate tumor growth in vivo. Data were analyzed by the Fisher’s exact test or the Mann-Whitney U test. Bonferroni correction was used for multiple testing.

Results

Significant up-regulation of LASP-1 was detected in OSCC-derived cell lines (n = 7, P<0.007) and primary OSCCs (n = 50, P<0.001) compared to normal controls. LASP-1 knockdown cells significantly inhibited cellular proliferation compared with shMock-transfected cells (P<0.025) by arresting cell-cycle progression at the G2 phase. We observed dramatic reduction in the growth of shLASP-1 OSCC xenografts compared with shMock xenografts in vivo.

Conclusion

Our results suggested that overexpression of LASP-1 is linked closely to oral tumourigenicity and further provide novel evidence that LASP-1 plays an essential role in tumor cellular growth by mediating G2/M transition.  相似文献   

14.
S Piao  Y Liu  J Hu  F Guo  J Ma  Y Sun  B Zhang 《PloS one》2012,7(8):e42540

Background and Objective

The significance of ubiquitin-specific protease 22 (USP22) as a potential marker has been growing in the field of oncology. The aim of this study was to investigate the role of USP22 and the association with its potential targets in oral squamous cell carcinoma (OSCC).

Methods

Immunohistochemistry was used to determine the expression of USP22 protein in 319 OSCC patients in comparison with 42 healthy controls. The clinical correlations and prognostic significance of the aberrantly expressed protein was evaluated to identify novel biomarker of OSCC.

Results

The incidence of positive USP22 expression was 63.32% in 319 conventional OSCC tissues. The protein expression level of USP22 was concomitantly up-regulated from non-cancerous mucosa to primary carcinoma and from carcinomas to lymph node metastasis (P<0.001). Moreover, statistical analysis showed that positive USP22 expression was positively related to lymph node metastasis, Ki67, Cox-2 and recurrence. Furthermore, it was shown that patients with positive USP22 expression had significantly poorer outcome compared with patients with negative expression of USP22 for patients with positive lymph nodes. Multivariate Cox regression analysis revealed that USP22 expression level was an independent prognostic factor for both overall survival and disease-free survival (P<0.001 and P<0.001, respectively). Cancer cells with reduced USP22 expression exhibited reduced proliferation and colony formation evaluated by MTT and soft agar assays.

Conclusion

To our knowledge, this is the first study that determines the relationship between USP22 expression and prognosis in OSCC. We found that increased expression of USP22 is associated with poor prognosis in OSCC. USP22 may represent a novel and useful prognostic marker for OSCC.  相似文献   

15.
Li J  Gong C  Feng X  Zhou X  Xu X  Xie L  Wang R  Zhang D  Wang H  Deng P  Zhou M  Ji N  Zhou Y  Wang Y  Wang Z  Liao G  Geng N  Chu L  Qian Z  Wang Z  Chen Q 《PloS one》2012,7(4):e33860

Background

OSCC is one of the most common malignancies and numerous clinical agents currently applied in combinative chemotherapy. Here we reported a novel therapeutic strategy, SAHA and DDP-loaded PECE (SAHA-DDP/PECE), can improve the therapeutic effects of intratumorally chemotherapy on OSCC cell xenografts.

Objective/Purpose

The objective of this study was to evaluate the therapeutic efficacy of the SAHA-DDP/PECE in situ controlled drug delivery system on OSCC cell xenografts.

Methods

A biodegradable and thermosensitive hydrogel was successfully developed to load SAHA and DDP. Tumor-beared mice were intratumorally administered with SAHA-DDP/PECE at 50 mg/kg (SAHA) +2 mg/kg (DDP) in 100 ul PECE hydrogel every two weeks, SAHA-DDP at 50 mg/kg(SAHA) +2 mg/kg(DDP) in NS, 2 mg/kg DDP solution, 50 mg/kg SAHA solution, equal volume of PECE hydrogel, or equal volume of NS on the same schedule, respectively. The antineoplastic actions of SAHA and DDP alone and in combination were evaluated using the determination of tumor volume, immunohistochemistry, western blot, and TUNEL analysis.

Results

The hydrogel system was a free-flowing sol at 10°C, become gel at body temperature, and could sustain more than 14 days in situ. SAHA-DDP/PECE was subsequently injected into tumor OSCC tumor-beared mice. The results demonstrated that such a strategy as this allows the carrier system to show a sustained release of SAHA and DDP in vivo, and could improved therapeutic effects compared with a simple additive therapeutic effect of SAHA and DDP on mouse model.

Conclusions

Our research indicated that the novel SAHA-DDP/PECE system based on biodegradable PECE copolymer enhanced the therapeutic effects and could diminished the side effects of SAHA/DDP. The present work might be of great importance to the further exploration of the potential application of SAHA/DDP-hydrogel controlled drug release system in the treatment of OSCC.  相似文献   

16.

Background

In Taiwan, oral cancer has causally been associated with environmental carcinogens. Carbonic anhydrase 9 (CA9) is reportedly overexpressed in several types of carcinomas and is generally considered a marker of malignancy. The current study explored the combined effect of CA9 gene polymorphisms and exposure to environmental carcinogens on the susceptibility of developing oral squamous cell carcinoma (OSCC) and the clinicopathological characteristics of the tumors.

Methodology and Principal Findings

Four single-nucleotide polymorphisms (SNPs) of the CA9 gene from 462 patients with oral cancer and 519 non-cancer controls were analyzed by a real-time polymerase chain reaction (PCR). While the studied SNPs (CA9 rs2071676, rs3829078, rs1048638 and +376 Del) were not associated with susceptibility to oral cancer, the GAA haplotype of 3 CA9 SNPs (rs2071676, rs3829078, and rs1048638) was related to a higher risk of oral cancer. Moreover, the four CA9 SNPs combined with betel quid chewing and/or tobacco consumption could robustly elevate susceptibility to oral cancer. Finally, patients with oral cancer who had at least one G allele of CA9 rs2071676 were at higher risk for developing lymph-node metastasis (p = 0.022), compared to those patients homozygous for AA.

Conclusions

Our results suggest that the haplotype of rs2071676, rs3829078, and rs1048638 combined has potential predictive significance in oral carcinogenesis. Gene-environment interactions of CA9 polymorphisms, smoking, and betel-quid chewing might alter oral cancer susceptibility and metastasis.  相似文献   

17.

Background

Treatment failure in oral squamous cell carcinoma (OSCC) leading to local recurrence(s) and metastases is mainly due to drug resistance. Cancer stem cells (CSCs) are thought be responsible for the development of drug resistance. However, the correlations between CSCs, drug resistance, and new strategy against drug resistance in OSCC remain elusive.

Methods

A drug-resistant sphere (DRSP) model was generated by using a nonadhesive culture system to induce drug-resistant cells from SCC25 oral cancer cells. A comparative analysis was performed between the parent control cells and DRSPs with a related treatment strategy focusing on the expression of epithelial–mesenchymal transition (EMT)-associated markers, drug-resistance-related genes, and CSC properties in vitro, as well as tumorigenicity and the regimen for tumor regression in vivo.

Results

Our data show the presence of a phenomenon of EMT with gradual cellular transition from an epithelioid to mesenchymal-like spheroid morphology during induction of drug resistance. The characterization of DRSPs revealed the upregulation of the drug-resistance-related genes ABCG2 and MDR-1 and of CSC-representative markers, suggesting that DRSPs have greater resistance to cisplatin (Cis) and stronger CSC properties compared with the control. Moreover, overexpression of phosphorylated heat-shock protein 27 (p-Hsp27) via the activation of p38 MAPK signaling was observed in DRSPs. Knockdown of Hsp27 decreased Cis resistance and induced apoptosis in DRSPs. Furthermore, an inhibitor of Hsp27, quercetin (Qu), suppressed p-Hsp27 expression, with alterations of the EMT signature, leading to the promotion of apoptosis in DRSPs. A xenographic study also confirmed the increase of tumorigenicity in DRSPs. The combination of Qu and Cis can reduce tumor growth and decrease drug resistance in OSCC.

Conclusions

The p38 MAPK–Hsp27 axis plays an important role in CSCs-mediated drug resistance in OSCC. Targeting this axis using Qu combined with Cis may be a treatment strategy to improve prognosis in patients with OSCC.  相似文献   

18.

Background

Topotecan produces DNA damage that induces autophagy in cancer cells. In this study, sensitising topotecan to colon cancer cells with different P53 status via modulation of autophagy was examined.

Methodology/Principal Findings

The DNA damage induced by topotecan treatment resulted in cytoprotective autophagy in colon cancer cells with wild-type p53. However, in cells with mutant p53 or p53 knockout, treatment with topotecan induced autophagy-associated cell death. In wild-type p53 colon cancer cells, topotecan treatment activated p53, upregulated the expression of sestrin 2, induced the phosphorylation of the AMPKα subunit at Thr172, and inhibited the mTORC1 pathway. Furthermore, the inhibition of autophagy enhanced the anti-tumour effect of topotecan treatment in wild-type p53 colon cancer cells but alleviated the anti-tumour effect of topotecan treatment in p53 knockout cells in vivo.

Conclusions/Significance

These results imply that the wild-type p53-dependent induction of cytoprotective autophagy is one of the cellular responses that determines the cellular sensitivity to the DNA-damaging drug topotecan. Therefore, our study provides a potential therapeutic strategy that utilises a combination of DNA-damaging agents and autophagy inhibitors for the treatment of colon cancer with wild-type p53.  相似文献   

19.

Background

Pancreatic cancer (PDAC) is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC), a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs). In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells.

Methods

Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition.

Results

Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt.

Conclusion

TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and might therefore play a role in PDAC spreading and metastasis in vivo.  相似文献   

20.

Background

The epidermal growth factor receptor (EGFR) is overexpressed in 80% of non-small cell lung cancer (NSCLC) and is associated with poor survival. In recent years, EGFR-targeted inhibitors have been tested in the clinic for NSCLC. Despite the emergence of novel therapeutics and their application in cancer therapy, the overall survival rate of lung cancer patients remains 15%. To develop more effective therapies for lung cancer we have combined the anti-EGFR antibody (Clone 225) as a molecular therapeutic with hybrid plasmonic magnetic nanoparticles (NP) and tested on non-small cell lung cancer (NSCLC) cells.

Methodology/Principal Findings

Cell viability was determined by trypan-blue assay. Cellular protein expression was determined by Western blotting. C225-NPs were detected by electron microscopy and confocal microscopy, and EGFR expression using immunocytochemistry. C225-NP exhibited a strong and selective antitumor effect on EGFR-expressing NSCLC cells by inhibiting EGFR-mediated signal transduction and induced autophagy and apoptosis in tumor cells. Optical images showed specificity of interactions between C225-NP and EGFR-expressing NSCLC cells. No binding of C225-NP was observed for EGFR-null NSCLC cells. C225-NP exhibited higher efficiency in induction of cell killing in comparison with the same amount of free C225 antibody in tumor cells with different levels of EGFR expression. Furthermore, in contrast to C225-NP, free C225 antibody did not induce autophagy in cells. However, the therapeutic efficacy of C225-NP gradually approached the level of free antibodies as the amount of C225 antibody conjugated per nanoparticle was decreased. Finally, attaching C225 to NP was important for producing the enhanced tumor cell killing as addition of mixture of free C225 and NP did not demonstrate the same degree of cell killing activity.

Conclusions/Significance

We demonstrated for the first time the molecular mechanism of C225-NP induced cytotoxic effects in lung cancer cells that are not characteristic for free molecular therapeutics thus increasing efficacy of therapy against NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号