首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have tested Leukaemia Inhibitory Factor (LIF) production by 12 rat colon tumour clones isolated from a single cell line that display various degrees of tumorigenicity A highly significant relationship was found between levels of soluble LIF produced by the clones and their in vivo tumorigenicity. Such results suggested a role for LIF as a tumour facilitating agent. To test this hypothesis, the highly tumorigenic and LIF producing PROb clone was transfected with the LIF cDNA in antisense orientation in order to decrease LIF production. Conversely, REGb, a low LIF producer that is rejected by syngeneic animals, as well as nude mice, was transfected with the LIF cDNA to increase its production. PROb cells transfected with antisense cDNA were shown to have decreased LIF production along with decreased tumorigenicity. LlF-transfected REGb cells expressing high LIF levels still regressed in syngeneic rats, but could form progressive tumours in nude mice. We did not detect LIF receptors on PROb or REGb cells and their in vitro proliferation was not modified by the addition of exogenous LIF. Therefore, LIF was not an autocrine growth regulator for PROb and REGb cells. Instead, LIF appears to facilitate in vivo tumour growth, without being an immunosuppressive factor sufficient on its own to allow growth of immunogenic cells in fully immunocompetent hosts.  相似文献   

3.
Mouse embryonic stem (ES) cells can be maintained in an undifferentiated state in the presence of leukemia inhibitory factor (LIF), a member of the interleukin-6 cytokine family. In other mammals, this is not possible with LIF alone. Chicken ES-like cells (blastodermal cells) have only been cultured with mouse LIF because chicken LIF was not available. However the culture system is imperfect and chicken ES-like cells equivalent to mouse ES cells were not observed. In the present study, we cloned the cDNA-encoding chicken LIF using mRNA subtraction and RACE methodology. The chicken LIF cDNA encodes a protein with approximately 40% sequence identity to mouse LIF. It has 211 amino acids including a putative N-terminal signal peptide of 24 residues. Chicken blastodermal cells were cultured in the presence of bacterially expressed chicken LIF or mouse LIF. The expression of alkaline phosphatase and embryonal carcinoma cell monoclonal antibody-1 and stage-specific embryonic antigen-1 and the activation of STAT3 were examined, all of which are indices of the undifferentiated state. Exposure in the blastodermal cells to recombinant chicken LIF but not to mouse LIF maintained the expression of these various markers. After 9 days of incubation, the blastodermal cells formed cystic embryoid bodies in the presence of mouse LIF but not in the presence of recombinant chicken LIF. We conclude that chicken LIF is able to maintain chicken ES cell cultures in the undifferentiated state.  相似文献   

4.
5.
Abstract: Schwann cells play a major role in promoting nerve survival and regeneration after injury. Their activities include providing neurotrophic factors and increasing the production of extracellular matrix components and cell surface adhesion molecules to promote axon regeneration. Following nerve transection, leukemia inhibitory factor (LIF) is up-regulated by Schwann cells at the injury site. LIF receptors are also up-regulated at the nerve injury site, but their cellular localization and function have not been fully characterized. We demonstrate that Schwann cells express mRNAs for LIF and the LIF receptor components LIF receptor subunit β and glycoprotein 130 in vitro. We also show that although LIF is not required for the genesis of Schwann cells, it can potentiate the survival of differentiated Schwann cells in the context of neuregulin support. Not only does exogenous LIF promote survival under these conditions, but addition of the soluble LIF receptor (LIF binding protein) and anti-LIF antibodies significantly reduced cell survival, suggesting that LIF exerts autocrine effects. These results suggest that Schwann cell survival following nerve injury is potentially modulated by LIF.  相似文献   

6.
Leukemia inhibitory factor (LIF), a member of the interleukin-6 cytokine family, plays a complex role in cancer. LIF inhibits the proliferation and survival of several myeloid leukemia cells but promotes tumor progression and metastasis in many solid tumors. However, the relationship between LIF and gastric cancer has not been well understood. LIF was downregulated in gastric cancer as detected by western blot analysis and immunohistochemistry (IHC). Notably, LIF was downregulated in approximately 70% (56/80) of primary gastric cancers, in which it was significantly associated with advanced clinical stage, lymph node metastasis, and poor overall survival (median 5-year survival = 26 vs. 43 months for patients with high LIF expression and low LIF expression gastric cancer, respectively). To study the potential function of LIF in the downregulation of gastric cancer, we monitored the behavior using proliferation, cell cycle, and flow cytometry analysis. Overexpression of LIF inhibited the gastric cancer cell cycle in the G1 phase. In our experiment, overexpression of LIF by lentivirus upregulated P21 and downregulated cyclin D1. Recombinant human LIF also downregulated P21 and cyclin D1 at various times. A further in vivo tumor formation study in nude mice indicated that overexpression of LIF in gastric cancer significantly delayed the progress of tumor formation. These findings indicate that LIF may serve as a negative regulator of gastric cancer.  相似文献   

7.
Leukemia inhibitory factor (LIF) plays a key role in the survivability of mouse embryos during pre-implantation. In this study, we verified the role of LIF by detecting gene expression in morula stage embryos through DNA microarray. Our results showed that LIF knockdown affected expression of 369 genes. After LIF supplementation, the epidermal growth factor (EGF) is most affected by LIF expression. To observe the correlation between LIF and EGF, the LIF knockdown embryos were supplemented with various growth factors, including LIF, EGF, GM-CSF, TGF, and IGF II. Only LIF and EGF caused the rate of blastocyst development to recover significantly from 52% of control to 83% and 93%, respectively. All of the variables, including the diameter of blastocysts, the number of blastomeres, and cells in ICM and TE, were almost restored. Moreover, EGF knockdown also impaired blastocyst development, which was reversed by LIF or EGF supplementation. The treatment with various signaling suppressors revealed that both EGF and LIF promoted embryonic development through the JAK/STAT3 signaling pathway. These data suggest that the EGF and LIF can be compensatory to each other during early embryonic development, and at least one of them is necessary for sustaining the normal development of pre-implantation embryos.  相似文献   

8.
Leukemia Inhibitory Factor (LIF) interacts with two classes of high affinity binding sites on rat UMR cells cultured in monolayer. One class of binding sites was found to be localized in the extracellular matrix (ECM) after removal of cells from the culture dish. The interaction of LIF with ECM-localized binding sites is not dependent upon either glycosylation of LIF or the presence of extracellular glycosyaminoglycans. Chemical cross-linking studies demonstrate that LIF interacts with a 200-kD cell-associated protein and a 140-kD ECM- localized protein. A 140-kD protein could also be specifically precipitated from solubilised metabolically radiolabeled UMR ECM by antibodies directed against LIF by virtue of its ability to form a stable complex with unlabeled LIF. In addition, soluble LIF associated with this ECM-localized protein is biologically active in terms of inhibition of ES cell differentiation. The properties of ECM-localized 140-kD species are very similar to those of the secreted form of the LIF receptor suggesting that the ECM localization of LIF and LIF signal transduction may be closely coupled.  相似文献   

9.
Leukemia inhibitory factor (LIF) has been shown to play an important role in the implantation of mouse blastocysts. The present study was designed to document the appearance of LIF in the rabbit uterus during early pregnancy and to determine whether changes just prior to implantation, similar to those in mice, occurred. LIF was localized in endometrial epithelium, myometrium, and endometrial glands. A low level of LIF was detected in the uterus of nonestrous and estrous females. LIF expression reached its highest level on day 5 of pregnancy and declined on days 6 and 7. By day 13 of pregnancy, little endometrial LIF was apparent. The expression of LIF on day 5 of pseudopregnancy was similar to that on day 5 of pregnancy. LIF expression was much higher at implantation sites than that at nonimplantation areas on day 7 of pregnancy. It is concluded that LIF may be important for the implantation of rabbit blastocysts. © 1994 Wiley-Liss, Inc.  相似文献   

10.
11.
LIF, a multifunctional cytokine, is frequently overexpressed in many types of solid tumors, including breast cancer, and plays an important role in promoting tumorigenesis. Currently, how LIF promotes tumorigenesis is not well-understood. Metabolic reprogramming is a hallmark of cancer cells and a key contributor to cancer progression. However, the role of LIF in cancer metabolic reprogramming is unclear. In this study, we found that LIF increases glucose uptake and drives glycolysis, contributing to breast tumorigenesis. Blocking glucose uptake largely abolishes the promoting effect of LIF on breast tumorigenesis. Mechanistically, LIF overexpression enhances glucose uptake via activating the AKT/GLUT1 axis to promote glycolysis. Blocking the AKT signaling by shRNA or its inhibitors greatly inhibits glycolysis driven by LIF and largely abolishes the promoting effect of LIF on breast tumorigenesis. These results demonstrate an important role of LIF overexpression in glucose metabolism reprogramming in breast cancers, which contributes to breast tumorigenesis. This study also reveals an important mechanism underlying metabolic reprogramming of breast cancers, and identifies LIF and its downstream signaling as potential therapeutic targets for breast cancers, especially those with LIF overexpression.Subject terms: Breast cancer, Cancer metabolism, Oncogenes  相似文献   

12.
为提高白血病抑制因子在原核细胞中的表达水平,采用改变终止密码、改变5′端ATG前后序列及与高表达序列的融合等3种方法进行改构。实验表明,白血病抑制因子与重组IL-6部分序列融合后,表达量明显提高,其包含体经2次洗涤后目的蛋白含量可达65%。  相似文献   

13.
The neurotrophic cytokines ciliary neurotrophic factor and leukemia inhibitory factor (LIF) play a key role in neuronal and oligodendrocyte survival and as protective factors in neuroinflammation. To further elucidate the potential of endogenous LIF in modulating neuroinflammation, we studied myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in LIF knockout mice (LIF(-/-) mice). In the late phase of active myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis, LIF(-/-) mice exhibited a markedly milder disease course. The inflammatory infiltrate in LIF(-/-) mice was characterized by an increase in neutrophilic granulocytes early and fewer infiltrating macrophages associated with less demyelination later in the disease. In good correlation with an effect of endogenous LIF on the immune response, we found an Ag-specific T cell-priming defect with impaired IFN-gamma production in LIF(-/-) mice. On the molecular level, the altered recruitment of inflammatory cells is associated with distinct patterns of chemokine production in LIF(-/-) mice with an increase of CXCL1 early and a decrease of CCL2, CCL3, and CXCL10 later in the disease. These data reveal that endogenous LIF is an immunologically active molecule in neuroinflammation. This establishes a link between LIF and the immune system which was not observed in the ciliary neurotrophic factor knockout mouse.  相似文献   

14.
15.
Leukaemia inhibitory factor (LIF) is a pleiotropic cytokine that is particularly involved in nephrogenesis and repair of the extracellular matrix. Transgenic mice overexpressing LIF have mesangial proliferative glomerulonephritis. Also, during local inflammatory reactions, such as kidney graft rejection or urinary tract infections, urinary LIF excretion is enhanced. The aim of the study therefore was to study LIF production by normal and inflammatory diseased kidneys (glomerulonephritis or graft rejection), maintained in short cultures. To determine the responsibility of the kidney itself in LIF synthesis, we measured LIF secretion into the culture supernatants of human mesangial or renal tubular epithelial cells. Fragments from diseased kidneys, whether grafts or not, released more LIF than normal human kidney fragments, mesangial or renal tubular epithelial cells. However, LIF production was delayed in renal transplants compared to glomerulonephritic samples taken from untreated patients. In every case, LIF production was enhanced by interleukin 1beta (IL-1beta) and inhibited by IL-4 or dexamethasone, except in two severe rejection episodes. So, LIF appeared to respond to pro- and anti-inflammatory stimuli, in vitro and in vivo. Considering its biological effects, LIF could play a role in inflammatory renal diseases.  相似文献   

16.
Leukemia inhibitory factor (LIF) is produced by a large number of pulmonary cells in response to diverse stimuli. Exaggerated levels of LIF have also been detected in the adult respiratory distress syndrome and other disorders. The biologic effects of LIF in the lung, however, have not been elucidated. To define the respiratory effects of LIF, we generated transgenic mice in which human LIF was selectively targeted to the mature lung. In these mice, transgene activation caused an impressive increase in bronchoalveolar lavage (BAL) cellularity with a significant increase in BAL and tissue B lymphocytes. LIF also conferred protection in 100% O2 where it decreased alveolar-capillary protein leak and enhanced survival. This protective effect was associated with the induction of interleukin (IL)-6 mRNA and protein. LIF transgenic mice with a null mutation in IL-6 were more sensitive to the toxic effects of 100% O2 than LIF-transgenic animals with a wild-type IL-6 locus. These studies demonstrate that LIF induces B cell hyperplasia and confers protection in hyperoxic acute lung injury. They also demonstrate that LIF induces IL-6 and that the protective effects of LIF are mediated, in part, via this inductive event. LIF may be an important regulator of B cell-mediated responses and oxidant injury in the lung.  相似文献   

17.
白血病抑制因子对胚泡金属蛋白酶表达的影响   总被引:1,自引:0,他引:1  
为了探讨白血病抑制因子 (LIF) 对胚泡着床作用的机理,胚泡经与LIF及其特异性抗体培养后,通过RT-PCR及免疫印迹技术,分析了LIF与着床前小鼠胚泡的基质金属蛋白酶9(MMP9)表达和分泌之间的关系.结果显示:LIF可明显诱导胚泡MMP9的分泌和基因表达; 经LIF特异性抗体封闭后,胚泡MMP9的分泌及基因表达下降,且下降趋势随着LIF被封闭时间延长而减弱,对MMPs组织抑制因子1(TIMP1)的影响则不明显.说明LIF可能通过诱导MMP9的分泌及基因表达来影响胚泡对子宫内膜细胞外基质的水解,促进着床.  相似文献   

18.
Oncostatin M binds the high-affinity leukemia inhibitory factor receptor.   总被引:12,自引:0,他引:12  
Oncostatin M (OSM) is a glycoprotein cytokine that was recently demonstrated to be structurally and functionally related to the leukemia inhibitory factor (LIF). We have investigated the binding of each cytokine to a variety of cellular receptors including those on solid tumor lines, leukemic cells, endothelial cells, macrophages, and cells transfected with the recently cloned low-affinity LIF receptor, and to a soluble form of the LIF receptor. LIF is incapable of binding either high- or low-affinity OSM receptors, yet OSM is capable of binding the high-affinity but not the low-affinity LIF receptor. Since the presence of high-affinity LIF receptors correlates with the biological activity of LIF on a wide range of target cells, we predict that OSM should have similar effects on LIF-responsive cells.  相似文献   

19.
Xu J  Li Z  Xu P  Yang Z 《Cell stress & chaperones》2012,17(4):485-493
Leukemia inhibitory factor (LIF) is a pleiotropic glycoprotein belonging to the interleukin-6 family of cytokines. In kidney, LIF regulates nephrogenesis, involves in tubular regeneration, responds to pro- and anti-inflammatory stimuli, and so on. LIF also plays an essential role in protective mechanisms triggered by preconditioning-induced oxidative stress. Although LIF shows a wide range of biologic activities, effects of LIF on high glucose-induced oxidative stress in podocytes remain unclear. The aim of the study was to assess whether LIF can attenuate high glucose-induced apoptosis in podocytes. The result of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated that LIF protected podocytes against high glucose-induced cytotoxicity. The flow cytometry assay showed that LIF attenuated high glucose-induced apoptosis in podocytes. Meanwhile, the result of flow cytometric assay gave the clear indication that LIF decreased high glucose-induced elevated level of reactive oxygen species (ROS). The measurement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase (SOD), malondialdehyde (MDA), and caspase-3 activity levels showed that LIF attenuated the high glucose-induced decreased level of SOD and elevated level of NADPH oxidase, MDA and caspase-3 activity. These results may provide potential therapy for diabetic nephropathy in the future.  相似文献   

20.
A panel of six na?ve 14-residue random peptide libraries displayed polyvalently on M13 phage was pooled and sorted against human leukemia inhibitory factor (LIF). After four rounds of selection, a single large family of peptides with the consensus sequence XCXXXXG(A/S)(D/E)(W/F)WXCF was found to bind specifically to LIF. Peptides within this family did not bind related members of the interleukin-6 family of cytokines, nor to murine LIF that has 80% sequence identity with human LIF. A representative peptide from this family was synthesized and found to bind to LIF with an affinity of approximately 300 nM. The phage-displayed form of this peptide was able to compete with the LIF receptor alpha chain (LIFR) for binding to LIF; however, the free synthetic peptide was unable to inhibit LIF-LIFR binding or inhibit LIF bioactivity in vitro. Using a panel of human/murine chimeric LIF molecules, the peptide-binding site on LIF was mapped to a groove located between the B and the C helices of the LIF structure, which is distinct from the surfaces involved in binding to receptor. To mimic the effect of the phage particle and convert the free peptide into an antagonist of LIFR binding, a 40 kDa poly(ethylene glycol) (PEG) moiety was conjugated to the synthetic LIF-binding peptide. This PEG-peptide conjugate was found to be both an antagonist of LIF-LIFR binding and of LIF signaling in engineered Ba/F3 cells expressing LIFR and the gp130 coreceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号