首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Na(+)-pumping NADH-ubiquinone oxidoreductase has six polypeptide subunits (NqrA-F) and a number of redox cofactors, including a noncovalently bound FAD and a 2Fe-2S center in subunit F, covalently bound FMNs in subunits B and C, and a noncovalently bound riboflavin in an undisclosed location. The FMN cofactors in subunits B and C are bound to threonine residues by phosphoester linkages. A neutral flavin-semiquinone radical is observed in the oxidized enzyme, whereas an anionic flavin-semiquinone has been reported in the reduced enzyme. For this work, we have altered the binding ligands of the FMNs in subunits B and C by replacing the threonine ligands with other amino acids, and we studied the resulting mutants by EPR and electron nuclear double resonance spectroscopy. We conclude that the sodium-translocating NADH:quinone oxidoreductase forms three spectroscopically distinct flavin radicals as follows: 1) a neutral radical in the oxidized enzyme, which is observed in all of the mutants and most likely arises from the riboflavin; 2) an anionic radical observed in the fully reduced enzyme, which is present in wild type, and the NqrC-T225Y mutant but not the NqrB-T236Y mutant; 3) a second anionic radical, seen primarily under weakly reducing conditions, which is present in wild type, and the NqrB-T236Y mutant but not the NqrC-T225Y mutant. Thus, we can tentatively assign the first anionic radical to the FMN in subunit B and the second to the FMN in subunit C. The second anionic radical has not been reported previously. In electron nuclear double resonance spectra, it exhibits a larger line width and larger 8alpha-methyl proton splittings, compared with the first anionic radical.  相似文献   

2.
Redox titration of all optically detectable prosthetic groups of Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) at pH 7.5 showed that the functionally active enzyme possesses only three titratable flavin cofactors, one noncovalently bound FAD and two covalently bound FMN residues. All three flavins undergo different redox transitions during the function of the enzyme. The noncovalently bound FAD works as a "classical" two-electron carrier with a midpoint potential (E(m)) of -200 mV. Each of the FMN residues is capable of only one-electron reduction: one from neutral flavosemiquinone to fully reduced flavin (E(m) = 20 mV) and the other from oxidized flavin to flavosemiquinone anion (E(m) = -150 mV). The lacking second half of the redox transitions for the FMNs cannot be reached under our experimental conditions and is most likely not employed in the catalytic cycle. Besides the flavins, a [2Fe-2S] cluster was shown to function in the enzyme as a one-electron carrier with an E(m) of -270 mV. The midpoint potentials of all the redox transitions determined in the enzyme were found to be independent of Na(+) concentration. Even the components that exhibit very strong retardation in the rate of their reduction by NADH at low sodium concentrations experienced no change in the E(m) values when the concentration of the coupling ion was changed 1000 times. On the basis of these data, plausible mechanisms for the translocation of transmembrane sodium ions by Na(+)-NQR are discussed.  相似文献   

3.
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory flavo-FeS complex composed of the six subunits NqrA-F. The Na(+)-NQR was produced as His(6)-tagged protein by homologous expression in V. cholerae. The isolated complex contained near-stoichiometric amounts of non-covalently bound FAD (0.78 mol/mol Na(+)-NQR) and riboflavin (0.70 mol/mol Na(+)-NQR), catalyzed NADH-driven Na(+) transport (40 nmol Na(+)min(-1) mg(-1)), and was inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide. EPR spectroscopy showed that Na(+)-NQR as isolated contained very low amounts of a neutral flavosemiquinone (10(-3) mol/mol Na(+)-NQR). Reduction with NADH resulted in the formation of an anionic flavosemiquinone (0.10 mol/mol Na(+)-NQR). Subsequent oxidation of the Na(+)-NQR with ubiquinone-1 or O(2) led to the formation of a neutral flavosemiquinone (0.24 mol/mol Na(+)-NQR). We propose that the Na(+)-NQR is fully oxidized in its resting state, and discuss putative schemes of NADH-triggered redox transitions.  相似文献   

4.
Many marine and pathogenic bacteria have a unique sodium-translocating NADH:ubiquinone oxidoreductase (Na(+)-NQR), which generates an electrochemical Na(+) gradient during aerobic respiration. Na(+)-NQR consists of six subunits (NqrA-F) and contains five known redox cofactors: two covalently bound FMNs, one noncovalently bound FAD, one riboflavin, and one 2Fe-2S center. A stable neutral flavin-semiquinone radical is observed in the air-oxidized enzyme, while the NADH- or dithionite-reduced enzyme exhibits a stable anionic flavin-semiquinone radical. The NqrF subunit has been implicated in binding of both the 2Fe-2S cluster and the FAD. Four conserved cysteines (C70, C76, C79, and C111) in NqrF match the canonical 2Fe-2S motif, and three conserved residues (R210, Y212, S246) have been predicted to be part of a flavin binding domain. In this work, these two motifs have been altered by site-directed mutagenesis of individual residues and are confirmed to be essential for binding, respectively, the 2Fe-2S cluster and FAD. EPR spectra of the FAD-deficient mutants in the oxidized and reduced forms exhibit neutral and anionic flavo-semiquinone radical signals, respectively, demonstrating that the FAD in NqrF is not the source of either radical signal. In both the FAD and 2Fe-2S center mutants the line widths of the neutral and anionic flavo-semiquinone EPR signals are unchanged from the wild-type enzyme, indicating that neither of these centers is nearby or coupled to the radicals. Measurements of steady-state turnover using NADH, Q-1, and the artificial electron acceptor ferricyanide strongly support an electron transport pathway model in which the noncovalently bound FAD in the NqrF subunit is the initial electron acceptor and electrons then flow to the 2Fe-2S center.  相似文献   

5.
Two radical signals with different line widths are seen in the Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio harveyi by EPR spectroscopy. The first radical is observed in the oxidized enzyme, and is assigned as a neutral flavosemiquinone. The second radical is observed in the reduced enzyme and is assigned to be the anionic form of flavosemiquinone. The time course of Na+-NQR reduction by NADH, as monitored by stopped-flow optical spectroscopy, shows three distinct phases, the spectra of which suggest that they correspond to the reduction of three different flavin species. The first phase is fast both in the presence and absence of sodium, and is assigned to reduction of FAD to FADH2 at the NADH dehydrogenating site. The rates of the other two phases are strongly dependent on sodium concentration, and these phases are attributed to reduction of two covalently bound FMN's. Combination of the optical and EPR data suggests that a neutral FMN flavosemiquinone preexists in the oxidized enzyme, and that it is reduced to the fully reduced flavin by NADH. The other FMN moiety is initially oxidized, and is reduced to the anionic flavosemiquinone. One-electron transitions of two discrete flavin species are thus assigned as sodium-dependent steps in the catalytic cycle of Na+-NQR.  相似文献   

6.
The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na+ across the bacterial membrane. The Na+-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na+-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na+-NQR is discussed.  相似文献   

7.
The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio harveyi was purified and studied by EPR and visible spectroscopy. Two EPR signals in the NADH-reduced enzyme were detected: one, a radical signal, and the other a line around g = 1.94, which is typical for a [2Fe-2S] cluster. An E(m) of -267 mV was found for the Fe-S cluster (n = 1), independent of sodium concentration. The spin concentration of the radical in the enzyme was approximately the same under a variety of redox conditions. The time course of Na+-NQR reduction by NADH indicated the presence of at least two different flavin species. Reduction of the first species (most likely, a FAD near the NADH dehydrogenase site) was very rapid in both the presence and absence of sodium. Reduction of the second flavin species (presumably, covalently bound FMN) was slower and strongly dependent on sodium concentration, with an apparent activation constant for Na+ of approximately 3.4 mM. This is very similar to the Km for Na+ in the steady-state quinone reductase reaction catalyzed by this enzyme. These data led us to conclude that the sodium-dependent step within the Na+-NQR is located between the noncovalently bound FAD and the covalently bound FMN.  相似文献   

8.
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe–2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na+-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na+-NQR contains approximately 1.7 mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na+-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na+-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

9.
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

10.
《BBA》2022,1863(5):148547
The Na+-pumping NADH-ubiquinone (UQ) oxidoreductase (Na+-NQR) is an essential bacterial respiratory enzyme that generates a Na+ gradient across the cell membrane. However, the mechanism that couples the redox reactions to Na+ translocation remains unknown. To address this, we examined the relation between reduction of UQ and Na+ translocation using a series of synthetic UQs with Vibrio cholerae Na+-NQR reconstituted into liposomes. UQ0 that has no side chain and UQCH3 and UQC2H5, which have methyl and ethyl side chains, respectively, were catalytically reduced by Na+-NQR, but their reduction generated no membrane potential, indicating that the overall electron transfer and Na+ translocation are not coupled. While these UQs were partly reduced by electron leak from the cofactor(s) located upstream of riboflavin, this complete loss of Na+ translocation cannot be explained by the electron leak. Lengthening the UQ side chain to n-propyl (C3H7) or longer significantly restored Na+ translocation. It has been considered that Na+ translocation is completed when riboflavin, a terminal redox cofactor residing within the membrane, is reduced. In this view, the role of UQ is simply to accept electrons from the reduced riboflavin to regenerate the stable neutral riboflavin radical and reset the catalytic cycle. However, the present study revealed that the final UQ reduction via reduced riboflavin makes an important contribution to Na+ translocation through a critical role of its side chain. Based on the results, we discuss the critical role of the UQ side chain in Na+ translocation.  相似文献   

11.
The catalytic properties of sodium-translocating NADH:quinone oxidoreductases (Na+-NQRs) from the marine bacterium Vibrio harveyi, the enterobacterium Klebsiella pneumoniae, and the soil microorganism Azotobacter vinelandii have been comparatively analyzed. It is shown that these enzymes drastically differ in their affinity to sodium ions. The enzymes also possess different sensitivity to inhibitors. Na+-NQR from A. vinelandii is not sensitive to low 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO) concentrations, while Na+-NQR from K. pneumoniae is fully resistant to either Ag+ or N-ethylmaleimide. All the Na+-NQR-type enzymes are sensitive to diphenyliodonium, which is shown to modify the noncovalently bound FAD of the enzyme.  相似文献   

12.
Efimov I  McIntire WS 《Biochemistry》2004,43(32):10532-10546
The spectral and redox properties are described for the wild-type and Y384F mutant forms of the flavoprotein component (PchF) of flavocytochrome, p-cresol methylhydroxylase (PCMH), and cytochrome-free PchF that harbor FAD analogues. The analogues are iso-FAD (8-demethyl-6-methyl-FAD), 6-amino-FAD (6-NH(2)-FAD), 6-bromo-FAD (6-Br-FAD), 8-nor-8-chloro-FAD (8-Cl-FAD), and 5-deaza-5-carba-FAD (5-deaza-FAD). All of the analogues bound noncovalently and stoichiometrically to cytochrome-free apo-PchF, and the resulting holoproteins had high affinity for the cytochrome subunit, PchC. Noncovalently bound FAD, 6-Br-FAD, or 6-NH(2)-FAD can be induced to bind covalently by exposing holo-PchF to PchC. The rate of this process and the redox potential of the noncovalently bound flavin may be correlated. In addition, the redox potential of each FAD analogue was higher when it was covalently bound than when noncovalently bound to PchF. Furthermore, the potential of a covalently bound or noncovalently bound FAD analogue increased on association of the corresponding holo-PchF with PchC, and the activity increased as the flavin's redox potential increased. It was discovered also that 4-hydroxybenzaldehyde, the final p-cresol oxidation product, is an efficient competitive inhibitor for substrate oxidation by PchF since it binds tightly to this protein when the flavin is oxidized, although it binds more loosely to the enzyme with reduced flavin. Finally, the energies of the charge-transfer bands for the interaction of bound flavin analogues with 4-Br-phenol (a substrate mimic) increased as the potential decreases, although a simple global correlation was not seen. This is the case because the energy is also a function of the redox properties of the bound mimic. The implications of these findings to covalent flavinylation and catalysis are discussed.  相似文献   

13.
Efimov I  Cronin CN  McIntire WS 《Biochemistry》2001,40(7):2155-2166
Each flavoprotein subunit (alpha or PchF) of the alpha(2)beta(2) flavocytochrome p-cresol methylhydroxylase (PCMH) from Pseudomonas putida contains FAD covalently attached to Tyr384. PCMH oxidizes p-cresol to 4-hydroxybenzyl alcohol, which is oxidized subsequently by PCMH to 4-hydroxybenzaldehyde. The Y384F mutant form of PchF (apo-PchF[Y384F]) displayed stoichiometric noncovalent FAD binding. PchF[Y384F]FAD associated with the cytochrome subunit (beta or PchC) (producing PCMH[Y384F]), although not as avidly as with wild-type PchF containing covalently bound FAD (PchF(C)). Dramatic increases in the two-electron E(m,7) (NHE) values for FAD were observed when it bound noncovalently to either apo-PchF or apo-PchF[Y384F], and the two-electron E(m,7) value for FAD was increased further by about 75 mV upon covalent binding to PchF, i.e., PchF(C). The E(m,7) values increased by approximately 20 and 45 mV, respectively, when PchF(C) and PchF[Y384F]FAD associated with PchC. The two-electron E(m,7) for covalently bound FAD in PCMH is 84 mV, the highest measured for a flavoprotein. The values for the one-electron redox potentials (E(m,7), NHE) for FAD were measured also for various forms of PchF. Under anaerobiosis, the reduction of PchF[Y384F]FAD by substrates was similar to that observed previously for PchF containing noncovalently bound FAD. Stopped-flow kinetic studies indicated a rapid substrate reduction of the FAD and heme in PCMH[Y384F] which produced PchF[Y384F]FAD(rad) x PchC, the mutant enzyme containing the flavin radical and reduced heme. These experiments also revealed a slow reduction of unassociated PchC(ox) by PchF[Y384F]FAD(rad) x PchC. Steady-state kinetic studies of the reaction of PCMH[Y384F] with p-cresol indicated that the K(m) for this substrate was unchanged relative to that of PCMH, but that the k(cat) was diminished by an order of magnitude. The data indicate that the covalent attachment of FAD to PchF assists catalysis by raising the E(m,7) of the flavin. Contributions to this effect likely result from conformational changes.  相似文献   

14.
The Na(+)-translocating NADH: ubiquinone oxidoreductase (Na(+)-NQR) generates an electrochemical Na(+) potential driven by aerobic respiration. Previous studies on the enzyme from Vibrio alginolyticus have shown that the Na(+)-NQR has six subunits, and it is known to contain FAD and an FeS center as redox cofactors. In the current work, the enzyme from the marine bacterium Vibrio harveyi has been purified and characterized. In addition to FAD, a second flavin, tentatively identified as FMN, was discovered to be covalently attached to the NqrC subunit. The purified V. harveyi Na(+)-NQR was reconstituted into proteoliposomes. The generation of a transmembrane electric potential by the enzyme upon NADH:Q(1) oxidoreduction was strictly dependent on Na(+), resistant to the protonophore CCCP, and sensitive to the sodium ionophore ETH-157, showing that the enzyme operates as a primary electrogenic sodium pump. Interior alkalinization of the inside-out proteoliposomes due to the operation of the Na(+)-NQR was accelerated by CCCP, inhibited by valinomycin, and completely arrested by ETH-157. Hence, the protons required for ubiquinol formation must be taken up from the outside of the liposomes, which corresponds to the bacterial cytoplasm. The Na(+)-NQR operon from this bacterium was sequenced, and the sequence shows strong homology to the previously reported Na(+)-NQR operons from V. alginolyticus and Haemophilus influenzae. Homology studies show that a number of other bacteria, including a number of pathogenic species, also have an Na(+)-NQR operon.  相似文献   

15.
The Na(+)-translocating NADH:quinone oxidoreductase from Vibrio cholerae is a six subunit enzyme containing four flavins and a single motif for the binding of a Fe-S cluster on its NqrF subunit. This study reports the production of a soluble variant of NqrF (NqrF') and its individual flavin and Fe-S-carrying domains using V. cholerae or Escherichia coli as expression hosts. NqrF' and the flavin domain each contain 1 mol of FAD/mol of enzyme and exhibit high NADH oxidation activity (20,000 micromol min(-1) mg(-1)). EPR, visible absorption, and circular dichroism spectroscopy indicate that the Fe-S cluster in NqrF' and its Fe-S domain is related to 2Fe ferredoxins of the vertebrate-type. The addition of NADH to NqrF' results in the formation of a neutral flavosemiquinone and a partial reduction of the Fe-S cluster. The NqrF subunit harbors the active site of NADH oxidation and acts as a converter between the hydride donor NADH and subsequent one-electron reaction steps in the Na(+)-translocating NADH:quinone oxidoreductase complex. The observed electron transfer NADH --> FAD --> [2Fe-2S] in NqrF requires positioning of the FAD and the Fe-S cluster in close proximity in accordance with a structural model of the subunit.  相似文献   

16.
Kinetic studies have demonstrated that vitamin B2 and its coenzyme forms FMN and FAD are potent inhibitors of glycogen phosphorylase b from rabbit skeletal muscle. The inhibition of the enzyme by flavins has a co-operative character (Hill coefficients exceed unity). Glycogen phosphorylase b bound to FMN or FAD does not reveal catalytic activity, whereas the enzyme bound to riboflavin retains about 16% of the initial catalytic activity.  相似文献   

17.
The nqr operon from Vibrio cholerae, encoding the entire six-subunit, membrane-associated, Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), was cloned under the regulation of the P(BAD) promoter. The enzyme was successfully expressed in V. cholerae. To facilitate molecular genetics studies of this sodium-pumping enzyme, a host strain of V. cholerae was constructed in which the genomic copy of the nqr operon was deleted. By using a vector containing a six-histidine tag on the carboxy terminus of the NqrF subunit, the last subunit in the operon, the recombinant enzyme was readily purified by affinity chromatography in a highly active form from detergent-solubilized membranes of V. cholerae. The recombinant enzyme has a high specific activity in the presence of sodium. NADH consumption was assessed at a turnover number of 720 electrons per second. When purified using dodecyl maltoside (DM), the isolated enzyme contains approximately one bound ubiquinone, whereas if the detergent LDAO is used instead, the quinone content of the isolated enzyme is negligible. Furthermore, the recombinant enzyme, purified with DM, has a relatively low rate of reaction with O(2) (10-20 s(-1)). In steady state turnover, the isolated, recombinant enzyme exhibits up to 5-fold stimulation by sodium and functions as a primary sodium pump, as reported previously for Na(+)()-NQR from other bacterial sources. When reconstituted into liposomes, the recombinant Na(+)-NQR generates a sodium gradient and a Delta Psi across the membrane. SDS-PAGE resolves all six subunits, two of which, NqrB and NqrC, contain covalently bound flavin. A redox titration of the enzyme, monitored by UV-visible spectroscopy, reveals three n = 2 redox centers and one n = 1 redox center, for which the presence of three flavins and a 2Fe-2S center can account. The V. cholerae Na(+)-NQR is well-suited for structural studies and for the use of molecular genetics techniques in addressing the mechanism by which NADH oxidation is coupled to the pumping of Na(+) across the membrane.  相似文献   

18.
M S Jorns 《Biochemistry》1985,24(13):3189-3194
Sarcosine oxidase from Corynebacterium sp. U-96 contains 1 mol of noncovalently bound flavin and 1 mol of covalently bound flavin per mole of enzyme. Anaerobic titrations of the enzyme with either sarcosine or dithionite show that both flavins are reducible and that two electrons per flavin are required for complete reduction. Absorption increases in the 510-650-nm region, attributed to the formation of a blue neutral flavin radical, are observed during titration of the enzyme with dithionite or substrate, during photochemical reduction of the enzyme, and during reoxidation of substrate-reduced enzyme. Fifty percent of the enzyme flavin forms a reversible, covalent complex with sulfite (Kd = 1.1 X 10(-4) M), accompanied by a complete loss of catalytic activity. Sulfite does not prevent reduction of the sulfite-unreactive flavin by sarcosine but does interfere with the reoxidation of reduced enzyme by oxygen. The stability of the sulfite complex is unaffected by excess acetate (an inhibitor competitive with sarcosine) or by removal of the noncovalent flavin to form a semiapoprotein preparation where 75% of the flavin reacts with sulfite (Kd = 9.4 X 10(-5) M) while only 3% remains reducible with sarcosine. The results indicate that oxygen and sulfite react with the covalently bound flavin and suggest that sarcosine is oxidized by the noncovalently bound flavin.  相似文献   

19.
A sarcosine oxidase (sarcosine: oxygen oxidoreductase (demethylating), EC 1.5.3.1) isolated from Corynebacterium sp. U-96 contains both covalently bound FAD and noncovalently bound FAD. The noncovalent FAD reacts with sarcosine, the covalent FAD with molecular oxygen (Jorns, M.S. (1985) Biochemistry 24, 3189-3194). To clarify the reaction mechanism of the enzyme, kinetic investigations were performed by the stopped-flow method as well as by analysis of the overall reaction. The absorption spectrum of the enzyme in the steady state was very similar to that of the oxidized enzyme, and no intermediate enzyme species, such as a semiquinoid flavin, was detected. The rate for anaerobic reduction of the noncovalently bound FAD and the covalently bound FAD by sarcosine were 31 and 6.7 s-1, respectively. The latter value was smaller than the value of respective Vmax/e0 obtained by the overall reaction kinetics (Vmax/e0: the maximum velocity per enzyme concentration). Both rate constants for oxidation of the two FADs by molecular oxygen were 100 s-1. A reaction scheme of sarcosine oxidase is proposed to account for the data obtained; 70% of the enzyme functions via a fully reduced enzyme, and 30% of the enzyme goes along a side-path, without forming the fully reduced enzyme. In addition, it is suggested that the reactivity of noncovalently bound FAD with sarcosine is affected by the oxidation-reduction state of the covalently bound FAD, in contrast to the reactivity of the covalently bound FAD with molecular oxygen, which is independent of the oxidation-reduction state of the noncovalently bound FAD.  相似文献   

20.
The crystal structure of glucooligosaccharide oxidase from Acremonium strictum was demonstrated to contain a bicovalent flavinylation, with the 6- and 8alpha-positions of the flavin isoalloxazine ring cross-linked to Cys(130) and His(70), respectively. The H70A and C130A single mutants still retain the covalent FAD, indicating that flavinylation at these two residues is independent. Both mutants exhibit a decreased midpoint potential of approximately +69 and +61 mV, respectively, compared with +126 mV for the wild type, and possess lower activities with k(cat) values reduced to approximately 2 and 5%, and the flavin reduction rate reduced to 0.6 and 14%. This indicates that both covalent linkages increase the flavin redox potential and alter the redox properties to promote catalytic efficiency. In addition, the isolated H70A/C130A double mutant does not contain FAD, and addition of exogenous FAD was not able to restore any detectable activity. This demonstrates that the covalent attachment is essential for the binding of the oxidized cofactor. Furthermore, the crystal structure of the C130A mutant displays conformational changes in several cofactor and substrate-interacting residues and hence provides direct evidence for novel functions of flavinylation in assistance of cofactor and substrate binding. Finally, the wild-type enzyme is more heat and guanidine HCl-resistant than the mutants. Therefore, the bicovalent flavin linkage not only tunes the redox potential and contributes to cofactor and substrate binding but also increases structural stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号