首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A monomolecular native-like three-helix bundle has been designed in an iterative process, beginning with a peptide that noncooperatively assembled into an antiparallel three-helix bundle. Three versions of the protein were designed in which specific interactions were incrementally added. The hydrodynamic and spectroscopic properties of the proteins were examined by size exclusion chromatography, sedimentation equilibrium, fluorescence spectroscopy, and NMR. The thermodynamics of folding were evaluated by monitoring the thermal and guanidine-induced unfolding transitions using far UV circular dichroism spectroscopy. The attainment of a unique, native-like state was achieved through the introduction of: (1) helix capping interactions; (2) electrostatic interactions between partially exposed charged residues; (3) a diverse collection of apolar side chains within the hydrophobic core.  相似文献   

2.
Streptococcus equisimilis streptokinase (SK) is a single-chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial infarction due to its ability to activate human plasminogen (Plg). The mechanism by which this occurs is poorly understood due to the lack of structural details concerning both molecules and their complex. We reported recently (Parrado J et al., 1996, Protein Sci 5:693-704) that SK is composed of three structural domains (A, B, and C) with a C-terminal tail that is relatively unstructured. Here, we report thermal unfolding experiments, monitored by CD and NMR, using samples of intact SK, five isolated SK fragments, and two two-chain noncovalent complexes between complementary fragments of the protein. These experiments have allowed the unfolding processes of specific domains of the protein to be monitored and their relative stabilities and interdomain interactions to be characterized. Results demonstrate that SK can exist in a number of partially unfolded states, in which individual domains of the protein behave as single cooperative units. Domain B unfolds cooperatively in the first thermal transition at approximately 46 degrees C and its stability is largely independent of the presence of the other domains. The high-temperature transition in intact SK (at approximately 63 degrees C) corresponds to the unfolding of both domains A and C. Thermal stability of domain C is significantly increased by its isolation from the rest of the chain. By contrast, cleavage of the Phe 63-Ala 64 peptide bond within domain A causes thermal destabilization of this domain. The two resulting domain portions (A1 and A2) adopt unstructured conformations when separated. A1 binds with high affinity to all fragments that contain the A2 portion, with a concomitant restoration of the native-like fold of domain A. This result demonstrates that the mechanism whereby A1 stimulates the plasminogen activator activities of complementary SK fragments is the reconstitution of the native-like structure of domain A.  相似文献   

3.
Computer simulations using the simplified energy function and simulated tempering dynamics have accurately determined the native structure of the pYVPML, SVLpYTAVQPNE, and SPGEpYVNIEF peptides in the complexes with SH2 domains. Structural and equilibrium aspects of the peptide binding with SH2 domains have been studied by generating temperature-dependent binding free energy landscapes. Once some native peptide-SH2 domain contacts are constrained, the underlying binding free energy profile has the funnel-like shape that leads to a rapid and consistent acquisition of the native structure. The dominant native topology of the peptide-SH2 domain complexes represents an extended peptide conformation with strong specific interactions in the phosphotyrosine pocket and hydrophobic interactions of the peptide residues C-terminal to the pTyr group. The topological features of the peptide-protein interface are primarily determined by the thermodynamically stable phosphotyrosyl group. A diversity of structurally different binding orientations has been observed for the amino-terminal residues to the phosphotyrosine. The dominant native topology for the peptide residues carboxy-terminal to the phosphotyrosine is tolerant to flexibility in this region of the peptide-SH2 domain interface observed in equilibrium simulations. The energy landscape analysis has revealed a broad, entropically favorable topology of the native binding mode for the bound peptides, which is robust to structural perturbations. This could provide an additional positive mechanism underlying tolerance of the SH2 domains to hydrophobic conservative substitutions in the peptide specificity region.  相似文献   

4.
The gene-3 protein (G3P) of filamentous phages is essential for the infection of Escherichia coli. The carboxy-terminal domain anchors this protein in the phage coat, whereas the two amino-terminal domains N1 and N2 protrude from the phage surface. We analyzed the folding mechanism of the two-domain fragment N1-N2 of G3P (G3P(*)) and the interplay between folding and domain assembly. For this analysis, a variant of G3P(*) was used that contained four stabilizing mutations (IIHY-G3P(*)). The observed refolding kinetics extend from 10 ms to several hours. Domain N1 refolds very rapidly (with a time constant of 9.4 ms at 0.5 M guanidinium chloride, 25 degrees C) both as a part of IIHY-G3P(*) and as an isolated protein fragment. The refolding of domain N2 is slower and involves two reactions with time constants of seven seconds and 42 seconds. These folding reactions of the individual domains are followed by a very slow, spectroscopically silent docking process, which shows a time constant of 6200 seconds. This reaction was detected by a kinetic unfolding assay for native molecules. Before docking, N1 and N2 unfold fast and independently, after docking they unfold slowly in a correlated fashion. A high energy barrier is thus created by domain docking, which protects G3P kinetically against unfolding. The slow domain docking is possibly important for the infection of E.coli by the phage. Upon binding to the F pilus, the N2 domain separates from N1 and the binding site for TolA on domain N1 is exposed. Since domain reassembly is so slow, this binding site remains accessible until pilus retraction has brought N1 close to TolA on the bacterial surface.  相似文献   

5.
Kinetics of refolding and unfolding of staphylococcal nuclease and its six mutants, each carrying single or double amino acid substitutions, are studied by stopped-flow circular dichroism measurements. A transient kinetic intermediate formed within 10 ms after refolding starts possesses a substantial part of the N-domain core β-structure, whereas helices are formed at the later stages. The structure of the kinetic intermediate is less organized than the structure that is known to be formed by a nuclease 1-136 fragment. Only the refolding kinetics are affected by the mutations in all the mutants except two in which the mutations have changed the native structure. From this result and also from the locations of the mutation sites, the major N-terminal domain of the nuclease in the transition state of folding has a structure nearly identical to the native one. On the other hand, the minor C-terminal domain has previously been shown to be still disorganized in the transition state. The effects of the amino acid substitutions on the stability of the native and the transition states are in good agreement with the changes in the hydration free energy, expected for the corresponding amino acid replacements in the unfolded polypeptide. Since side chains of all the mutated residues are not accessible to solvent in the native structure, the result suggests that it is the unfolded state that is mainly affected by the mutations. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Peptide ligands bind the CRF(1) receptor by a two-domain mechanism: the ligand's carboxyl-terminal portion binds the receptor's extracellular N-terminal domain (N-domain) and the ligand's amino-terminal portion binds the receptor's juxtamembrane domain (J-domain). Little quantitative information is available regarding this mechanism. Specifically, the microaffinity of the two interactions and their contribution to overall ligand affinity are largely undetermined. Here we measured ligand interaction with N- and J-domains expressed independently, the former (residues 1-118) fused to the activin IIB receptor's membrane-spanning alpha-helix (CRF(1)-N) and the latter comprising residues 110-415 (CRF(1)-J). We also investigated the effect of nonpeptide antagonist and G-protein on ligand affinity for N- and J-domains. Peptide agonist affinity for CRF(1)-N was only 1.1-3.5-fold lower than affinity for the whole receptor (CRF(1)-R), suggesting the N-domain predominantly contributes to peptide agonist affinity. Agonist interaction with CRF(1)-J (potency for stimulating cAMP accumulation) was 12000-1500000-fold weaker than with CRF(1)-R, indicating very weak direct agonist interaction with the J-domain. Nonpeptide antagonist affinity for CRF(1)-J and CRF(1)-R was indistinguishable, indicating the compounds bind predominantly the J-domain. Agonist activation of CRF(1)-J was fully blocked by nonpeptide antagonist, suggesting antagonism results from inhibition of agonist-J-domain interaction. G-protein coupling with CRF(1)-R (forming RG) increased peptide agonist affinity 92-1300-fold, likely resulting from enhanced agonist interaction with the J-domain rather than the N-domain. Nonpeptide antagonists, which bind the J-domain, blocked peptide agonist binding to RG, and binding of peptide antagonists, predominantly to the N-domain, was unaffected by R-G coupling. These findings extend the two-domain model quantitatively and are consistent with a simple equilibrium model of the two-domain mechanism: (1) The N-domain binds peptide agonist with moderate-to-high microaffinity, substantially increasing the local concentration of agonist and so allowing weak agonist-J-domain interaction. (2) Agonist-J-domain interaction is allosterically enhanced by receptor-G-protein interaction and inhibited by nonpeptide antagonist.  相似文献   

7.
The molten globule state of equine lysozyme is more stable than that of alpha-lactalbumin and is stabilized by non-specific hydrophobic interactions and native-like hydrophobic interactions. We constructed a chimeric protein which is produced by replacing the flexible loop (residues 105-110) in human alpha-lactalbumin with the helix D (residues 109-114) in equine lysozyme to investigate the possible role of the helix D for the high stability and native-like packing interaction in the molten globule state of equine lysozyme. The stability of the molten globule state formed by the chimeric protein to guanidine hydrochloride-induced unfolding is the same as that of equine lysozyme and is substantially greater than that of human alpha-lactalbumin, although only six residues come from equine lysozyme. Our results also suggest that the non-native interaction in the molten globule state of alpha-lactalbumin changes to the native-like packing interaction due to helix substitution. The solvent-accessibility of the Trp residues in the molten globule state of the chimeric protein is similar to that in the molten globule state of equine lysozyme in which packing interaction around the Trp residues in the native state is partially preserved. Therefore, the helix D in equine lysozyme is one of the contributing factors to the high stability and native-like packing interaction in the molten globule state of equine lysozyme. Our results indicate that the native-like packing interaction can stabilize the rudimentary intermediate which is stabilized by the non-specific hydrophobic interactions.  相似文献   

8.
A shortened, recombinant protein comprising residues 109-666 of the tailspike endorhamnosidase of Salmonella phage P22 was purified from Escherichia coli and crystallized. Like the full-length tailspike, the protein lacking the amino-terminal head-binding domain is an SDS-resistant, thermostable trimer. Its fluorescence and circular dichroism spectra indicate native structure. Oligosaccharide binding and endoglycosidase activities of both proteins are identical. A number of tailspike folding mutants have been obtained previously in a genetic approach to protein folding. Two temperature-sensitive-folding (tsf) mutations and the four known global second-site suppressor (su) mutations were introduced into the shortened protein and found to reduce or increase folding yields at high temperature. The mutational effects on folding yields and subunit folding kinetics parallel those observed with the full-length protein. They mirror the in vivo phenotypes and are consistent with the substitutions altering the stability of thermolabile folding intermediates. Because full-length and shortened tailspikes aggregate upon thermal denaturation, and their denaturant-induced unfolding displays hysteresis, kinetics of thermal unfolding were measured to assess the stability of the native proteins. Unfolding of the shortened wild-type protein in the presence of 2% SDS at 71 degrees C occurs at a rate of 9.2 x 10(-4) s(-1). It reflects the second kinetic phase of unfolding of the full-length protein. All six mutations were found to affect the thermal stability of the native protein. Both tsf mutations accelerate thermal unfolding about 10-fold. Two of the su mutations retard thermal unfolding up to 5-fold, while the remaining two mutations accelerate unfolding up to 5-fold. The mutational effects can be rationalized on the background of the recently determined crystal structure of the protein.  相似文献   

9.
The contributions of some amino acid residues in the A, B, G, and H helices to the formation of the folding nucleus and folding intermediate of apomyoglobin were estimated. The effects of point substitutions of Ala for hydrophobic amino acid residues on the structural stability of the native (N) protein and its folding intermediate (I), as well as on the folding/unfolding rates for four mutant apomyoglobin forms, were studied. The equilibrium and kinetic studies of the folding/unfolding rates of these mutant proteins in a wide range of urea concentrations demonstrated that their native state was considerably destabilized as compared with the wild-type protein, whereas the stability of the intermediate state changed moderately. It was shown that the amino acid residues in the A, G, and H helices contributed insignificantly to the stabilization of the apomyoglobin folding nucleus in the rate-limiting I ? N transition, taking place after the formation of the intermediate, whereas the residue of the B helix was of great importance in the formation of the folding nucleus in this transition.  相似文献   

10.
The solution conformation of three peptides corresponding to the two beta-hairpins and the alpha-helix of the protein L B1 domain have been analyzed by circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR). In aqueous solution, the three peptides show low populations of native and non-native locally folded structures, but no well-defined hairpin or helix structures are formed. In 30% aqueous trifluoroethanol (TFE), the peptide corresponding to the alpha-helix adopts a high populated helical conformation three residues longer than in the protein. The hairpin peptides aggregate in TFE, and no significant conformational change occurs in the NMR observable fraction of molecules. These results indicate that the helical peptide has a significant intrinsic tendency to adopt its native structure and that the hairpin sequences seem to be selected as non-helical. This suggests that these sequences favor the structure finally attained in the protein, but the contribution of the local interactions alone is not enough to drive the formation of a detectable population of native secondary structures. This pattern of secondary structure tendencies is different to those observed in two structurally related proteins: ubiquitin and the protein G B1 domain. The only common feature is a certain propensity of the helical segments to form the native structure. These results indicate that for a protein to fold, there is no need for large native-like secondary structure propensities, although a minimum tendency to avoid non-native structures and to favor native ones could be required.  相似文献   

11.
Yeast 3-phosphoglycerate kinase (PGK) is a monomeric enzyme (Mr approximately 45,000) composed of two globular domains. Each domain corresponds approximately to the amino- and carboxy-terminal halves of the polypeptide chain. The carboxy-terminal end extends over the interdomain "hinge" region and packs against the amino-terminal domain. It has been proposed that domain movement, resulting in closure of the active site cleft, is essential for the catalytic function of PGK. Large-scale conformational changes have also been postulated to explain activation of the enzyme by sulfate ions. Using site-specific mutagenesis, we have removed a 15-amino-acid carboxy-terminal fragment, in order to probe its role in the substrate- and sulfate-induced conformational changes. The truncated enzyme exhibited approximately 1% of the activity of native PGK and lost the ability to undergo sulfate-induced activation. The Km for ATP was essentially unchanged (Km = 0.23 mM) in comparison to the native enzyme (Km = 0.30 mM), whereas the Km value for 3-phosphoglycerate was increased about eightfold (Km = 3.85 mM and 0.50 mM, respectively). These results suggest that the carboxy-terminal segment is important for the mechanism of the substrate- and sulfate-induced conformational transitions. CD spectra and sedimentation velocity measurements indicate that the carboxy-terminal peptide is essential for structural integrity of PGK. The increased susceptibility of the truncated enzyme to thermal inactivation implies that the carboxy-terminal peptide also contributes to the stability of PGK.  相似文献   

12.
The phage 434 Cro protein, the N-terminal domain of its repressor (R1-69) and that of phage lambda (lambda6-85) constitute a group of small, monomeric, single-domain folding units consisting of five helices with striking structural similarity. The intrinsic helix stabilities in lambda6-85 have been correlated to its rapid folding behavior, and a residual hydrophobic cluster found in R1-69 in 7 M urea has been proposed as a folding initiation site. To understand the early events in the folding of 434 Cro, and for comparison with R1-69 and lambda6-85, we examined the conformational behavior of five peptides covering the entire 434 Cro sequence in water, 40% (by volume) TFE/water, and 7 M urea solutions using CD and NMR. Each peptide corresponds to a helix and adjacent residues as identified in the native 434 Cro NMR and crystal structures. All are soluble and monomeric in the solution conditions examined except for the peptide corresponding to the 434 Cro helix 4, which has low water solubility. Helix formation is observed for the 434 Cro helix 1 and helix 2 peptides in water, for all the peptides in 40% TFE and for none in 7 M urea. NMR data indicate that the helix limits in the peptides are similar to those in the native protein helices. The number of side-chain NOEs in water and TFE correlates with the helix content, and essentially none are observed in 7 M urea for any peptide, except that for helix 5, where a hydrophobic cluster may be present. The low intrinsic folding propensities of the five helices could account for the observed stability and folding behavior of 434 Cro and is, at least qualitatively, in accord with the results of the recently described diffusion-collision model incorporating intrinsic helix propensities.  相似文献   

13.
A cytochrome c kinetic folding intermediate was studied by hydrogen exchange (HX) pulse labeling. Advances in the technique and analysis made it possible to define the structured and unstructured regions, equilibrium stability, and kinetic opening and closing rates, all at an amino acid-resolved level. The entire N-terminal and C-terminal helices are formed and docked together at their normal native positions. They fray in both directions from the interaction region, due to a progression in both unfolding and refolding rates, leading to the surprising suggestion that helix propagation may proceed very slowly in the condensed milieu. Several native-like beta turns are formed. Some residues in the segment that will form the native 60s helix are protected but others are not, suggesting energy minimization to some locally non-native conformation in the transient intermediate. All other regions are unprotected, presumably dynamically disordered. The intermediate resembles a partially constructed native state. It is early, on-pathway, and all of the refolding molecules pass through it. These and related results consistently point to distinct, homogeneous, native-like intermediates in a stepwise sequential pathway, guided by the same factors that determine the native structure. Previous pulse labeling efforts have always assumed EX2 exchange during the labeling pulse, often leading to the suggestion of heterogeneous intermediates in alternative parallel pathways. The present work reveals a dominant role for EX1 exchange in the high pH labeling pulse, which will mimic heterogeneous behavior when EX2 exchange is assumed. The general problem of homogeneous versus heterogeneous intermediates and pathways is discussed.  相似文献   

14.
FtsZ has two domains, the amino GTPase domain with a Rossmann fold, and the carboxyl domain that resembles the chorismate mutase fold. Bioinformatics analyses suggest that the interdomain interaction is stronger than the interaction of the protofilament longitudinal interfaces. Crystal B factor analysis of FtsZ and detected conformational changes suggest a connection between these domains. The unfolding/folding characteristics of each domain of FtsZ were tested by introducing tryptophans into the flexible region of the amino (F135W) and the carboxyl (F275W and I294W) domains. As a control, the mutation F40W was introduced in a more rigid part of the amino domain. These mutants showed a native-like structure with denaturation and renaturation curves similar to wild type. However, the I294W mutant showed a strong loss of functionality, both in vivo and in vitro when compared to the other mutants. The functionality was recovered with the double mutant I294W/F275A, which showed full in vivo complementation with a slight increment of in vitro GTPase activity with respect to the single mutant. The formation of a stabilizing aromatic interaction involving a stacking between the tryptophan introduced at position 294 and phenylalanine 275 could account for these results. Folding/unfolding of these mutants induced by guanidinium chloride was compatible with a mechanism in which both domains within the protein show the same stability during FtsZ denaturation and renaturation, probably because of strong interface interactions.  相似文献   

15.
The Saccharomyces cerevisiae non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The N-terminal prion domain (PrD) of Ure2 is required for prion activity in vivo and amyloid formation in vitro. However, the molecular mechanism of the prion-like activity remains obscure. Here we measure the kinetics of folding of Ure2 and two N-terminal variants that lack all or part of the PrD. The kinetic folding behaviour of the three proteins is identical, indicating that the PrD does not change the stability, rates of folding or folding pathway of Ure2. Both unfolding and refolding kinetics are multiphasic. An intermediate is populated during unfolding at high denaturant concentrations resulting in the appearance of an unfolding burst phase and "roll-over" in the denaturant dependence of the unfolding rate constants. During refolding the appearance of a burst phase indicates formation of an intermediate during the dead-time of stopped-flow mixing. A further fast phase shows second-order kinetics, indicating formation of a dimeric intermediate. Regain of native-like fluorescence displays a distinct lag due to population of this on-pathway dimeric intermediate. Double-jump experiments indicate that isomerisation of Pro166, which is cis in the native state, occurs late in refolding after regain of native-like fluorescence. During protein refolding there is kinetic partitioning between productive folding via the dimeric intermediate and a non-productive side reaction via an aggregation prone monomeric intermediate. In the light of this and other studies, schemes for folding, aggregation and prion formation are proposed.  相似文献   

16.
Thermodynamics of apocytochrome b5 unfolding.   总被引:4,自引:4,他引:0       下载免费PDF全文
Apocytochrome b5 from rabbit liver was studied by scanning calorimetry, limited proteolysis, circular dichroism, second derivative spectroscopy, and size exclusion chromatography. The protein is able to undergo a reversible two-state thermal transition. However, transition temperature, denaturational enthalpy, and heat capacity change are reduced compared with the holoprotein. Apocytochrome b5 stability in terms of Gibbs energy change at protein unfolding (delta G) amounts to delta G = 7 +/- 1 kJ/mol at 25 degrees C (pH 7.4) compared with delta G = 25 kJ/mol for the holoprotein. Apocytochrome b5 is a compact, native-like protein. According to the spectral data, the cooperative structure is mainly based in the core region formed by residues 1-35 and 79-90. This finding is in full agreement with NMR data (Moore, C.D. & Lecomte, J.T.J., 1993, Biochemistry 32, 199-207).  相似文献   

17.
A seven-residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10-ns simulations of both the native-like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM-PBSA analysis using several force fields, suggest a comparable free energy (DeltaDeltaG < or =6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690-member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins.  相似文献   

18.
The type VI secretion system (T6SS) is a multiprotein complex used by bacteria to deliver effectors into target cells. The T6SS comprises a bacteriophage-like contractile tail structure anchored to the cell envelope by a membrane complex constituted of the TssJ outer-membrane lipoprotein and the TssL and TssM inner-membrane proteins. TssJ establishes contact with the periplasmic domain of TssM whereas the transmembrane segments of TssM and its cytoplasmic domain interact with TssL. TssL protrudes in the cytoplasm but is anchored by a C-terminal transmembrane helix (TMH). Here, we show that TssL TMH dimerization is required for the stability of the protein and for T6SS function. Using the TOXCAT assay and point mutations of the 23 residues of the TssL TMH, we identified Thr194 and Trp199 as necessary for TssL TMH dimerization. NMR hydrogen–deuterium exchange experiments demonstrated the existence of a dimer with the presence of Trp185 and Trp199 at the interface. A structural model based on molecular dynamic simulations shows that TssL TMH dimer formation involves π–π interactions resulting from the packing of the two Trp199 rings at the C-terminus and of the six aromatic rings of Tyr184, Trp185 and Trp188 at the N-terminus of the TMH.  相似文献   

19.
Human age‐onset cataracts are believed to be caused by the aggregation of partially unfolded or covalently damaged lens crystallin proteins; however, the exact molecular mechanism remains largely unknown. We have used microseconds of molecular dynamics simulations with explicit solvent to investigate the unfolding process of human lens γD‐crystallin protein and its isolated domains. A partially unfolded folding intermediate of γD‐crystallin is detected in simulations with its C‐terminal domain (C‐td) folded and N‐terminal domain (N‐td) unstructured, in excellent agreement with biochemical experiments. Our simulations strongly indicate that the stability and the folding mechanism of the N‐td are regulated by the interdomain interactions, consistent with experimental observations. A hydrophobic folding core was identified within the C‐td that is comprised of a and b strands from the Greek key motif 4, the one near the domain interface. Detailed analyses reveal a surprising non‐native surface salt‐bridge between Glu135 and Arg142 located at the end of the ab folded hairpin turn playing a critical role in stabilizing the folding core. On the other hand, an in silico single E135A substitution that disrupts this non‐native Glu135‐Arg142 salt‐bridge causes significant destabilization to the folding core of the isolated C‐td, which, in turn, induces unfolding of the N‐td interface. These findings indicate that certain highly conserved charged residues, that is, Glu135 and Arg142, of γD‐crystallin are crucial for stabilizing its hydrophobic domain interface in native conformation, and disruption of charges on the γD‐crystallin surface might lead to unfolding and subsequent aggregation.  相似文献   

20.
The two domains of yeast phosphoglycerate kinase were produced by recombinant techniques. The N-domain was obtained by the introduction of a termination codon at the position coding for Phe185, and the C-domain by a deletion in the gene of the coding sequence between Ser1 and Leu186. Both domains were efficiently expressed in yeast, the level for the C-domain being greater than that for the N-domain. Both domains were found to have a quasi-native structure; the C-domain retained its ability to bind nucleotides. Small local differences were detected in domain structure compared to that in the whole enzyme, probably due to the lack of interdomain stabilizing interactions. Nevertheless, such an approach provides direct evidence for independent folding of domains in a two-domain protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号