首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of the dopamine receptor agonists apomorphine, piribedil and bromocryptine caused an increase in adrenal tyrosine hydroxylase (TH; tyrosine-3-monooxygenase, EC 1.14.16.2) which could be partially abolished by prior injection of the dopamine blocker haloperidol. Injection of L-dihydroxyphenylalanine, along with the decarboxylase inhibitor carbidopa, also led to a highly significant increase in adrenal TH activity. Intraventricular injection of 5,7-dihydroxytryptamine (DHT), which destroys serotonin neurons, doubled adrenal TH activity in both normal and hypophysectomized rats. Splanchnicotomy abolished this effect of DHT. The increase in enzyme activity mediated by DHT could be partially prevented by peripheral administration of L-5-hydroxytryptophan together with carbidopa. Blockade of serotoninergic functions with the antagonist methiothepin also increased adrenal TH activity. The interrelationship between the dopamine and the presumed serotonin system was investigated. Intraventricular injection of 6-hydroxydopamine partially prevented the DHT-induced increase in adrenal TH activity. Administration of haloperidol to DHT-treated rats had the same effect. This suggests that an intact dopaminergic system is required. When DHT and either apomorphine or piribedil were adminstered simultancously the dopamine agonist-induced increase was potentiated. An intact serotoninergic system is therefore not required for dopamine function. Thus, the increase in adrenal TH activity is associated with either stimulation of central dopamine receptors or destruction of serotonin neurons. It is suggested that dopaminergic and serotoninergic systems are involved in the regulation of adrenal TH and that these systems have net excitatory and inhibitory roles, respectively. Furthermore, the present evidence favors the view that the interaction between the two systems is sequential, with the serotonin system preceding the dopamine one.  相似文献   

2.
Rats were submitted to a series of 10 daily electroconvulsive shocks (ECS). A first group of animals was killed 1 day after the last seizure and a second group 30 days later. Tyrosine hydroxylase (TH) activity was measured using an in vitro assay in the nucleus caudatus, anterior cortex, amygdala, substantia nigra, ventral tegmental area, and locus ceruleus. The mRNA corresponding to this enzyme (TH-mRNA) was evaluated using a cDNA probe at the cellular level in the ventral tegmental area, substantia nigra, and locus ceruleus. Met-enkephalin (MET)-immunoreactivity and the mRNA coding for the preproenkephalin (PPE-mRNA) were assayed in striatum and the central nucleus of the amygdala. The day after the last ECS an increase of TH activity was observed in the ventral tegmental area, locus ceruleus, and substantia nigra in parallel with a similar increase in the amygdala and striatum; in the anterior cortex TH activity remained unchanged. TH-mRNA was increased in the locus ceruleus, evidencing the presence in this structure of a genomic activation. The amounts of MET and PPE-mRNA were unaffected in the striatum but increased in the amygdala. Thirty days after the last ECS we observed a decrease of TH activity in the amygdala and of TH-mRNA amount in the ventral tegmental area. In the locus ceruleus TH-mRNA remained higher in treated animals than in controls whereas TH activity returned to control levels. These results demonstrate that a series of ECS induces an initial increase of the activity of mesoamygdaloid catecholaminergic neurons followed by a sustained decrease through alterations of TH gene expression which could mediate the clinical effect of the treatment.  相似文献   

3.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is known to be controlled acutely (minutes) by phosphorylation and chronically (days) by protein synthesis. Using bovine adrenal chromaffin cells we found that nicotine, acting via nicotinic receptors, sustained the phosphorylation of TH at Ser40 for up to 48 h. Nicotine also induced sustained activation of TH, which for the first 24 h was completely independent of TH protein synthesis, and the phosphorylation of TH at Ser31. Imipramine did not inhibit the acute phosphorylation of TH at Ser40 or TH activation induced by nicotine, but did inhibit the sustained responses to nicotine seen at 24 h. The protein kinase(s) responsible for TH phosphorylation at Ser40 switched from being protein kinase C (PKC) independent in the acute phase to PKC dependent in the sustained phase. Sustained phosphorylation and activation of TH were also observed with histamine and angiotensin II. Sustained phosphorylation of TH at Ser40 provides a novel mechanism for increasing TH activity and this leads to increased catecholamine synthesis. Sustained phosphorylation of TH may be a selective target for drugs or pathology in neurons that contain TH and synthesize dopamine, noradrenaline or adrenaline.  相似文献   

4.
An improved quantitative immunochemical determination of brain tyrosine hydroxylase (TH) concentrations was designed using direct transfer into nitrocellulose from 20-microns thick brain sections, followed by immunodetection and quantitative radioautography in three reference brain structures (locus ceruleus, substantia nigra, and ventral tegmental area). Results obtained by this methodology were similar to those obtained after extraction and Western blotting of the TH protein in control and reserpine-treated animals. Moreover, this methodology allows the combination of high sensitivity and high anatomical resolution in the study of the distribution of pharmacological effects. The locus ceruleus exhibited a significant posteroanterior distribution of TH protein concentration in control and reserpine-treated animals.  相似文献   

5.
Nociceptin/orphanin FQ (N/OFQ) has been reported to inhibit dopamine (DA) release in basal ganglia mainly by acting on NOP receptors in substantia nigra and ventral tegmental area. We investigated whether N/OFQ could affect DA transmission by acting at either DA nerve endings or DA-targeted post-synaptic neurons. In synaptosomes of rat nucleus accumbens and striatum N/OFQ inhibited DA synthesis and tyrosine hydroxylase (TH) phosphorylation at Ser40 via NOP receptors coupled to inhibition of the cAMP/protein kinase A pathway. Immunofluorescence studies showed that N/OFQ preferentially inhibited phospho-Ser40-TH in nucleus accumbens shell and that in this subregion NOP receptors partly colocalized with either TH or DA D(1) receptor positive structures. In accumbens and striatum N/OFQ inhibited DA D(1) receptor-stimulated cAMP formation, but failed to affect either adenosine A(2A) or DA D(2) receptor regulation of cAMP. In accumbens slices, N/OFQ inhibited DA D(1)-induced phosphorylation of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptors, whereas in primary cultures of accumbal cells, which were found to coexpress NOP and DA D(1) receptors, N/OFQ curtailed DA D(1) receptor-induced cAMP-response element-binding protein phosphorylation. Thus, in accumbens and striatum N/OFQ exerts an inhibitory constraint on DA transmission by acting on either pre-synaptic NOP receptors inhibiting TH phosphorylation and DA synthesis or post-synaptic NOP receptors selectively down-regulating DA D(1) receptor signaling.  相似文献   

6.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in norepinephrine synthesis, and its expression and activity are regulated by many factors in sympathetic neurons. Cytokines that act through gp130, such as ciliary neurotrophic factor (CNTF) decrease norepinephrine production in sympathetic neurons by suppressing TH mRNA and stimulating degradation of TH protein, leading to the loss of enzyme. Their effect on the activity of TH is unclear, but recent in vivo observations suggest that cytokines may stimulate TH activity. We investigated this issue by quantifying TH protein levels and activity in cultured sympathetic neurons. We also examined the state of TH phosphorylation on serine 31 and 40, sites known to affect TH activity and degradation. We found that CNTF, acting through gp130, stimulated the rate of l-3,4-dihydroxyphenylalanine production while at the same time decreasing TH enzyme levels, thereby increasing the specific activity of the enzyme. We also found that phosphorylation of TH on Ser31 was increased, and phosphorylation on Ser40 was decreased, after four days of CNTF exposure. Our data are consistent with previous findings that Ser31 phosphorylation stimulates TH activity, whereas Ser40 phosphorylation can target TH for proteasomal degradation.  相似文献   

7.
This study was aimed at testing the hypothesis that serotoninergic receptors in the locus coeruleus (LC) play a role in bacterial lipopolysaccharide-induced fever. To this end, 5-HT1A (WAY-100635; 3 microg/100 nL) and 5-HT2A (ketanserin; 2 microg/100 nL) antagonists were microinjected into the LC and body temperature was monitored by biotelemetry. Intra-LC microinjections of ketanserin or WAY-100635 caused no change in body temperature of euthermic animals. 5-HT2A antagonism abolished the first phase of the lipopolysaccharide-induced fever. Taken together, these results indicate that serotonin acting on 5-HT2A receptors in the LC mediates the first phase of the febrile response, whereas 5-HT1A receptors are not involved in the lipopolysaccharide-induced fever.  相似文献   

8.
Recent studies have demonstrated that chronic stress increases the firing rate and expression of tyrosine hydroxylase (TH) in neurons of the locus coeruleus (LC), the major noradrenergic nucleus in brain. The present study was undertaken to examine the influence of chronic stress and other treatments known to influence the activity of LC neurons on the cyclic AMP (cAMP) second messenger system in these neurons. Chronic (5 days) cold exposure significantly increased levels of TH immunoreactivity in the LC, as previously reported, but not in substantia nigra (SN) or ventral tegmentum (VT), two dopaminergic nuclei studied for comparison. Chronic cold exposure increased levels of cAMP-dependent protein kinase activity in soluble, but not particulate, fractions of the LC, and increased basal and GTP- and forskolin-stimulated adenylate cyclase activity in this brain region. In contrast, levels of the protein kinase and adenylate cyclase in VT, SN, and frontal cortex were not significantly influenced by cold exposure. To study further the relationship between regulation of LC firing rate, TH expression, and the cAMP system in the LC, other treatments known to influence TH were examined. Reserpine treatment, shown previously to increase levels of TH, was found to increase both LC firing rate and levels of soluble cAMP-dependent protein kinase activity in the LC. 6-Hydroxydopamine, shown previously to increase levels of TH and firing rate of LC neurons, also increased soluble levels of protein kinase activity. Other treatments known to either increase (adrenalectomy) or decrease (chronic imipramine) levels of TH in the LC were also found to increase or decrease, respectively, levels of cAMP-dependent protein kinase activity in this brain region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is controlled by PACAP, acutely by phosphorylation at Ser40 and chronically by protein synthesis. Using bovine adrenal chromaffin cells we found that PACAP, acting via the continuous activation of PACAP 1 receptors, sustained the phosphorylation of TH at Ser40 and led to TH activation for up to 24 h in the absence of TH protein synthesis. The sustained phosphorylation of TH at Ser40 was not mediated by hierarchical phosphorylation of TH at either Ser19 or Ser31. PACAP caused sustained activation of PKA, but did not sustain activation of other protein kinases including ERK, p38 kinase, PKC, MAPKAPK2 and MSK1. The PKA inhibitor H89 substantially inhibited the acute and the sustained phosphorylation of TH mediated by PACAP. PACAP also inhibited the activity of PP2A and PP2C at 24 h. PACAP therefore sustained TH phosphorylation at Ser40 for 24 h by sustaining the activation of PKA and causing inactivation of Ser40 phosphatases. The PKA activator 8-CPT-6Phe-cAMP also caused sustained phosphorylation of TH at Ser40 that was inhibited by the PKA inhibitor H89. Using cyclic AMP agonist pairs we found that sustained phosphorylation of TH was due to both the RI and the RII isotypes of PKA. The sustained activation of TH that occurred as a result of TH phosphorylation at Ser40 could maintain the synthesis of catecholamines without the need for further stimulus of the adrenal cells or increased TH protein synthesis.  相似文献   

10.
Tyrosine hydroxylase (TH)-mRNA, assayed by in situ hybridization combined with TH immunocytochemistry, showed a selective increase in the ventral tegmental area (A-10) but not in the substantia nigra (A-9) midbrain dopaminergic (DAergic) neurons 3 days after reserpine treatment. TH-mRNA in locus ceruleus noradrenergic (A-4) neurons was increased by reserpine, as confirmed by RNA blot hybridization. These findings show that TH-mRNA is differentially regulated in midbrain DAergic neurons in response to reserpine.  相似文献   

11.
Iceta R  Mesonero JE  Alcalde AI 《Life sciences》2007,80(16):1517-1524
Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) broadly used in the treatment of human mood disorders and gastrointestinal diseases involving the serotoninergic system. The effectiveness of this therapy depends on repeated long-term treatment. Most of the long-term studies in vivo of SSRI effects on serotoninergic activity have focused on their effects on autoreceptors or postsynaptic receptors. The chronic effect of SSRIs on the activity of the serotonin transporter (SERT) has been less studied and the results have been contradictory. The aim of this study was to determine the specific effect of long-term fluoxetine treatment on human serotonin transporter (hSERT) in vitro, by using the human enterocyte-like cell line Caco-2. Results show that fluoxetine diminished the 5-HT uptake in a concentration-dependent way and that this effect was reversible. Fluoxetine affected mainly the hSERT transport rate by reducing the availability of the transporter in the membrane with no significant alteration of either the total hSERT protein content or the hSERT mRNA level. These results suggest that the effect of fluoxetine on the expression of hSERT is post-translational and has shown itself to be independent of PKC and PKA activity. This study may be useful to clarify the effect of the long-term fluoxetine therapy in both gastrointestinal and central nervous system disorders.  相似文献   

12.
Striatal delivery of dopamine (DA) by midbrain substantia nigra pars compacta (SNc) neurons is vital for motor control and its depletion causes the motor symptoms of Parkinson's disease. While membrane potential changes or neuronal activity regulates tyrosine hydroxylase (TH, the rate limiting enzyme in catecholamine synthesis) expression in other catecholaminergic cells, it is not known whether the same occurs in adult SNc neurons. We administered drugs known to alter neuronal activity to mouse SNc DAergic neurons in various experimental preparations and measured changes in their TH expression. In cultured midbrain neurons, blockade of action potentials with 1?μM tetrodotoxin decreased TH expression beginning around 20?h later (as measured in real time by green fluorescent protein (GFP) expression driven off TH promoter activity). By contrast, partial blockade of small-conductance, Ca(2+) -activated potassium channels with 300?nM apamin increased TH mRNA and protein between 12 and 24?h later in slices of adult midbrain. Two-week infusions of 300?nM apamin directly to the adult mouse midbrain in vivo also increased TH expression in SNc neurons, measured immunohistochemically. Paradoxically, the number of TH immunoreactive (TH+) SNc neurons decreased in these animals. Similar in vivo infusions of drugs affecting other ion-channels and receptors (L-type voltage-activated Ca(2+) channels, GABA(A) receptors, high K(+) , DA receptors) also increased or decreased cellular TH immunoreactivity but decreased or increased, respectively, the number of TH+ cells in SNc. We conclude that in adult SNc neurons: (i) TH expression is activity-dependent and begins to change ~20?h following sustained changes in neuronal activity; (ii) ion-channels and receptors mediating cell-autonomous activity or synaptic input are equally potent in altering TH expression; and (iii) activity-dependent changes in TH expression are balanced by opposing changes in the number of TH+ SNc cells.  相似文献   

13.
Abstract: To investigate the regulation of norepinephrine transporter mRNA in vivo, we analyzed the effects of reserpine on its expression in the rat adrenal medulla and locus ceruleus. First, PCR was used to clone a 0.5-kb rat cDNA fragment that exhibits 87% nucleotide identity to the corresponding human norepinephrine transporter cDNA sequence. In situ, the cDNA hybridizes specifically within norepinephrine-secreting cells, but in neither dopamine nor serotonin neurons, suggesting strongly it is a partial rat norepinephrine transporter cDNA. Reserpine, 10 mg/kg administered 24 h premortem, decreased steady-state levels of norepinephrine transporter mRNA in the adrenal medulla by ∼65% and in the locus ceruleus by ∼25%, as determined by quantitative in situ hybridization. Northern analysis confirmed the results of the in situ hybridization analysis in the adrenal medulla but did not detect the smaller changes observed in the locus ceruleus. Both analyses showed that reserpine increased tyrosine hydroxylase expression in the adrenal medulla and locus ceruleus. These results suggest that noradrenergic neurons and adrenal chromaffin cells can coordinate opposing changes in systems mediating catecholamine uptake and synthesis, to compensate for catecholamine depletion.  相似文献   

14.
15.
Prolactin secretion is controlled by the hypothalamus through different neurotransmitters which interact with multiple receptor subtypes. The discovery of different families of receptors for serotonin (5-HT1-5-HT7) and excitatory aminoacids (NMDA,KA,AMPA and metabotropic receptors) ilustrates the complexity of this regulation. Moreover, in the rat the role of different neurotransmitters changes during pubertal development. Present experiments were carried out to analyse the interactions between AMPA and serotoninergic receptors in the control of prolactin secretion in prepubertal male rats. For this purpose, 16 and 23-day old male rats were treated with 5-hydroxytryptophan (5-HTP, precursor of serotonin synthesis) plus fluoxetine (blocker of serotonin reuptake), 8-OH-DPAT (agonist of 5-HT1A receptors), DOI and α-Me-5-HT (agonists of 5-HT2 receptors), 1-phenylbiguanide (agonist of 5-HT3 receptors) alone or in combination with AMPA (agonist of AMPA receptors). The results obtained indicate that: (a) activation of 5-HT1A receptors stimulated PRL secretion on day 16 and inhibited it on day 23; activation of 5-HT2 receptors stimulated PRL secretion on days 16 and 23, whereas activation of 5-HT3 receptors inhibited PRL release only on day 23; (b) activation of AMPA receptors inhibited PRL secretion on day 23, but not on day 16 and (c) a cross-talk is apparent between 5-HT2 and AMPA receptors in the regulation of PRL secretion, the stimulatory effect of DOI being blocked by AMPA.  相似文献   

16.
Abstract: We developed a rapid and sensitive radioimmunohistochemical method for the quantification of tyrosine hydroxylase (TH) at both the anatomical and cellular level. Coronal tissue sections from fresh-frozen rat brains were incubated in the presence of a TH monoclonal antibody. The reaction was revealed with a 35S-labeled secondary antibody. TH content was quantified in catecholaminergic brain areas by measuring optical density on autoradiographic films or silver grain density on autoradiographic emulsion-coated sections. Regional TH concentrations determined in the locus ceruleus (LC), substantia nigra pars compacta (SNC), and ventral tegmental area (VTA) were significantly increased by 45% after reserpine treatment in the LC but unchanged in the SNC and VTA. Microscopic examination of TH radioimmunolabeling showed a heavy accumulation of silver grains over catecholaminergic cell bodies. In the LC, grain density per cell was heterogeneous and higher in the ventral than in the dorsal part of the structure. After reserpine treatment, TH levels were significantly increased (57%) in the neurons of the LC but not in those of the SNC or VTA. The data support the validity of this radioimmunohistochemical method as a tool for quantifying TH protein at the cellular level and they confirm that TH protein content is differentially regulated in noradrenergic and dopaminergic neurons in response to reserpine.  相似文献   

17.
Selected topics in the respiratory response to acute hypoxia in the fetus and newborn are reviewed. Peripheral chemoreceptors acting through ionotrophic glutamate receptors play an important role in affecting the initial augmentation phase. Whether fall off in peripheral chemoreceptor activity contributes to the secondary depressive phase remains controversial. A number of approaches including permanent electrolytic and reversible cooling lesions, Fos protein activation, and double-labeling immunohistochemistry has converged to show that an area in and around the locus ceruleus in the rostral pons affects the central depression. There is evidence that this is mediated by catecholamines acting at alpha(2)-adrenergic receptors. Tonic activity in early expiratory (postinspiratory) neurons may contribute to hypoxia-induced apneic episodes in the fetus and newborn. Desensitization of alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptors has been demonstrated in respiratory-related neurons both in vivo and in vitro. The role that this process might play in the depressive phase of the hypoxic ventilatory response has not been established. In vitro experiments with isolated brain stem-spinal cord preparations or transverse brain stem slices usually involve anoxia, whereas whole animal experiments use 8-15% O(2). Therefore, caution must be exercised in attempting to construct a unifying framework from these two approaches.  相似文献   

18.
1. 5,6-dihydroxytryptamine (5,6-DHT) or a lesion of the raphe centralis superior (RCS) cause significant decreases in the serotonin (5-HT) content and significant increases in the tyrosine hydroxylase activity in the locus coeruleus (LC) of the rat. This suggests that noradrenaline (NA) synthesis is controlled by serotonin-containing neurons in the raphe system via their terminals in the LC. 2. Radioautography after intraventricular infusion of tritiated serotonin (3H-5-HT) and biochemical determinations of endogenous 5-HT content showed an almost complete disappearance of serotoninergic axonal varicosities and content in the LC region 10-15 days after intraventricular administration of 75 micrograms of 5,6-DHT. Two to 4 months after neurotoxin administration, 5-HT fibers had regrown in the LC but, contrary to the normal innervation pattern, the majority of them invaded the medial most portion of the nucleus and the adjacent subependymal region. The LC region regained almost all of its endogenous 5-HT content in the same time period. 3. Functional recuperation of these 5-HT fibers was demonstrated by the fact that the RCS had, after regeneration, the same functional control on NA synthesis as in the normal animal.  相似文献   

19.
This work is a continuation of the study on transmitter regulation of the serotoninergic system activity in the brain of the edible snail Helix lucorum, in which serotonin and NO donors have been shown to excite serotoninergic neurons from various snail ganglia (more than 60 of them were studied) and synchronize their activity by activation of the synchronous synaptic inputs. In the current work, it has been shown that glutamate, on the contrary, has an inhibitory and desynchronizing action on the same serotonin-containing neurons by suppressing their own activity and switching off the synchronous synaptic inputs. In the same neurons, another glutamate receptor agonist, NMDA, has a pronounced excitatory effect and activates the synchronous synaptic inputs. The glutamate effects are NO-dependent: the NO donor sodium nitroprusside decreases, switches off entirely, or transforms the glutamate inhibitory effect into the excitatory one. A possible mechanism of interaction of serotonin, glutamate, and NO in regulation of the snail serotoninergic system activity is discussed.  相似文献   

20.
Knoll J  Miklya I  Knoll B  Dalló J 《Life sciences》2000,67(7):765-773
The amount of dopamine released from the striatum, substantia nigra and tuberculum olfactorium, noradrenaline from locus coeruleus and serotonin from the raphe, was significantly higher in four and five weeks old rats than in three month old ones, proving that the catecholaminergic/serotoninergic activity enhancer (CAE/SAE) regulation works unrestrained during developmental longevity and is restricted thereafter. As the dampening of the CAE/SAE regulation (end to the second month of age) coincided temporally with the appearance of sexual hormones, we castrated three weeks old male and female rats and measured at the end of the third month of their life the release of catecholamines and serotonin from selected discrete brain regions. The amount of catecholamines and serotonin released from the neurons was significantly higher in castrated than in untreated or sham operated rats, signalting that sexual hormones inhibit the CAE/SAE regulation in the brain. We therefore treated male and female rats s.c. with oil (0.1 ml/rat), testosterone, (0.1 mg/rat), estrone (0.01 mg/rat) and progesterone (0.5 mg/rat), respectively, and measured their effect on the CAE/SAE regulation. Twenty-four hours after a single injection with the hormones, the release of noradrenaline, dopamine and serotonin was significantly inhibited in the testosterone or estrone treated rats, but remained unchanged after progesteron treatment. In rats treated with a single hormone injection, testosterone in the male and estrone in the female was the significantly more effective inhibitor. Remarkably, the reverse order of potency was found in rats treated with daily hormone injections for 7 or 14 days. After two-week treatment with the hormones estrone was in the male and testosterone in the female the significantly more potent inhibitor of the CAE/SAE regulation. The data indicate that sexual hormones terminate the hyperactive phase of adolescence by dampening the impulse propagation mediated release of catecholamines and serotonin in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号