首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《Insect Biochemistry》1981,11(1):93-96
Tissues from Manduca sexta were examined for the presence of l-ascorbic acid and l-gulonolactone oxidase. l-Ascorbic acid was found in eggs, larval labial gland, haemolymph, gut, muscle, cuticle, adult nervous tissue and gonads at concentrations ranging from < 10 to > 150 mg per 100 g wet tissue. No ascorbate was detected in larval fat body and Malphigian tubule or adult salivary gland. Concentrations in labial gland and haemolymph increased 80- and 10-fold, respectively, during the fifth larval instar such that the labial gland surpassed all other tissues in ascorbate concentration. Since tissues from insects reared on an l-ascorbate-deficient diet contained no detectable vitamin C and l-gulonolactone oxidase was absent from tissue extracts, the hornworm apparently acquired l-ascorbate solely from the diet.  相似文献   

4.
The ultrastructure of the pericardial athrocytes of fifth instar tobacco hornworm Manduca sexta L. (Lepidoptera: Sphingidae) was examined by transmission electron microscopy. These cells are highly specialized for the maintenance of hemolymph homeostasis by synthesis and secretion of some proteins, and uptake and degradation of others. We observed a striking radial zonation with numerous labyrinthine channels extending into the cell providing a large surface area for enhanced efficiency of endocytosis. Granular material was imported into the endosomal compartment by fusion of endocytotic vesicles from the basal region. Anatomical evidence supports the hypothesis that proteins are transported from the endosome to the lysosome, by maturation of the early endosome to form the late endosome/lysosome, as opposed to vesicular transport. The presence of catalase in athrocyte lysosomes is reported for the first time. Endocytosis in the athrocytes of insects is compared with endocytosis in vertebrate systems.  相似文献   

5.
Cytosolic free calcium was measured in individual prothoracic gland cells of Manduca larvae with Fura-2. During the last larval instar there was no correlation between intracellular calcium concentration and ecdysteroid secretion by the glands. The addition of prothoracicotropic hormone (PTTH) from brains of Manduca larvae to prothoracic glands in vitro resulted in a significant increase in the calcium concentration of the gland cells. The effect of PTTH was inhibited by the inorganic calcium channel antagonists, cadmium, lanthanum and nickel, and by the antagonist of T-type calcium channels, amiloride, whereas all the other antagonists tested failed to block the action of PTTH. TMB-8, an inhibitor of intracellular calcium mobilization, did not reduce the PTTH-induced rise in calcium, which suggests that IP(3)-dependent intracellular calcium stores are not involved in the calcium-mediated stimulation of ecdysteroid synthesis. Moreover, PTTH is thought to increase intracellular calcium in prothoracic glands of Manduca by influencing calcium channels in the plasma membrane.  相似文献   

6.
1. K+ and Mg2+ concentrations were lower in larvae fed 2.5 mM canavanine-25 mM arginine-supplemented artificial diet (CAAM) than in larvae fed either control or 2.5 mM canavanine (CAV) diet2. Treatment differences for Na+ concentrations were not observed.3. Free amino acid concentrations in CAAM-fed larvae were higher and protein concentrations were lower than controls during the latter part of the feeding stage and the wandering larval stage; CAV-fed larvae exhibited intermediate concentrations.4. No difference in osmotic pressure was observed between treatments.  相似文献   

7.
Knowledge of the neuroanatomy of the sucking pump of Manduca sexta (Sphingidae) is valuable for studies of olfactory learning, pattern generators, and postembryonic modification of motor circuitry. The pump comprises a cibarial valve, a buccal pump, and an esophageal sphincter valve. Cibarial opener and closer muscles control the cibarial valve. Six pairs of dilator muscles and a compressor muscle operate the buccal pump. The cibarial opener and one pair of buccal dilator muscles are innervated by paired neurons in the tritocerebrum, and the cibarial opener has double, bilateral innervation. Their tritocerebral innervation indicates that these muscles evolved from labro-clypeal muscles. The remaining paired buccal dilator muscles each are innervated by an unpaired motor neuron in the frontal ganglion. These motor neurons project bilaterally through the frontal connectives to dendritic arborizations in the tritocerebrum. These projections also have a series of dendritic-like arborizations in the connectives. The cibarial closer and buccal compressor muscles are also innervated by motor neurons in the frontal ganglion, but only the closer muscle neuron projects bilaterally to the tritocerebrum. The innervation of the pump muscles indicates that they are associated with the stomodaeum, and, therefore, the buccal pump evolved from the anterior stomodaeum rather than from the cibarium.  相似文献   

8.
In Manduca sexta the germ band is formed 12 h post-oviposition (p.o.) (=10% development completed) and is located above the yolk at the egg surface. The cells show a polar organization. They are engaged in the uptake and degradation of yolk globules, pinched off from the yolk cells. This process can be observed in the integumental cells during the first growth phase of the embryo that lasts until "katatrepsis," an embryonic movement that takes place at 40% development completed. At 37% development completed, the ectoderm deposits a thin membrane at its apical surface, the first embryonic membrane, which detaches immediately before katatrepsis. The second period of embryonic growth--from katatrepsis to 84 h p.o. (70% development completed)--starts with the deposition of a second embryonic membrane that is somewhat thicker than the first one and shows a trilaminar, cuticulin-like structure. Whereas the apical cell surface is largely smooth during the deposition of the first embryonic membrane, it forms microvilli during deposition of the second one. At the same time, uptake of formed yolk material ceases and the epidermal cells now contain clusters of mitochondria below the apical surface. Rough endoplasmic reticulum (RER) increases in the perinuclear region. The second embryonic membrane detaches about 63 h p.o. At 69 h p.o., a new generation of microvilli forms and islands of a typical cuticulin layer indicate the onset of the deposition of the larval cuticle. The third growth phase is characterized by a steady increase in the embryo length, the deposition of the larval procuticle, and by cuticular tanning at about 100 h p.o. Beginning at that stage, electron-lucent vesicles aggregate below the epidermal surface and are apparently released below the larval cuticle. Manduca sexta is the first holometabolous insect in which the deposition of embryonic membranes and cuticles has been examined by electron microscopy. In correspondence with hemimetabolous insects, the embryo of M. sexta secretes three covers at approximately the same developmental stage. A marked difference: the second embryonic cover, which in Hemimetabola clearly exhibits a cuticular organization, has instead a membranous, cuticulin-like structure. We see the difference as the result of an evolutionary reductional process promoted by the redundancy of embryonic covers in the egg shell. Embryonic "molts" also occur in noninsect arthropods; their phylogenetical aspects are discussed.  相似文献   

9.
The labial gland of the adult sphingid moth, Manduca sexta, is composed of five distinct regions, each made of a single cellular type. Four of these regions are derivatives of the single specialized cellular population that makes up the caterpillar labial duct. Both the larval labial duct and its derivatives are large, polyploid cells with pleiomorphic nuclei. There is a definite cellular continuity between the larval and adult forms of these cells throughout metamorphosis; no mitoses or cell deaths are seen to occur in the gland during transformation. Cytological studies indicate that in the process of cell transformation the ducts first “dedifferentiate,” elongate, then redifferentiate. Intermediates in this process have well defined structures which should make this system useful in studying covert events in the transformation process.  相似文献   

10.
Labial glands of the tobacco hornworm Manduca sexta (Lepidoptera: Sphingiidae), homologues of Drosophila salivary glands, undergo programmed cell death (PCD) in a 4-day period during larva-to-pupa metamorphosis. The programmed death of the labial gland was examined by electron microscopy and measurement of protein synthesis as well as measurement of DNA synthesis, end-labeling of single strand breaks, and pulsed-field gel electrophoresis. One of the earliest changes observed is a sharp drop in synthesis of most proteins, coupled with synthesis of a glycine-rich protein, reminiscent of silk-like proteins. From a morphological standpoint, during the earliest phases the most prominent changes are the formation of small autophagic vacuoles containing ribosomes and an apparent focal dissolution of the membranes of the endoplasmic reticulum, whereas later changes include differing destruction at the lumenal and basal surfaces of the cell and erosion of the basement membrane. By the fourth day of metamorphosis, individual cells become rapidly vacuolated in a cell-independent manner. In the vacuolated cells on day 3, chromatin begins to coalesce. It is at this period that unequivocal nucleosomal ladders are seen and end-labeling in situ or electrophoretic techniques document single or double-strand breaks, respectively. DNA synthesis ceases shortly after the molt to the fifth instar, as detected by incorporation of tritiated thymidine and weak TUNEL labeling. Large size fragments of DNA are seen shortly after DNA synthesis ceases and thence throughout the instar, raising the possibility of potential limitations built into the cells before their final collapse. Dev. Genet. 21:249–257, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Central projections of neurons innervating sensory structures on the head of larval Manduca sexta were traced by using methods of anterograde cobalt-diffusion. Regions of the deutocerebrum and tritocerebrum in the brain receive input from the antenna, labrum, maxilla, labial palps, hypopharynx and other unidentified regions of the buccal cavity. Antennal, maxillary and labial inputs project to the larval antennal centre (LAC) of the deutocerebrum. Stemmatal neurons and a few antennal neurons project into the protocerebrum. The suboesophageal ganglion (SEG) receives input from mechanosensory neurons in all parts of the head and its sensory appendages. Some mechanosensory neurons project further to the first thoracic ganglion. In addition to receiving input from chemosensory neurons of the maxilla, the SEG may also receive chemosensory input from epipharyngeal sensilla of the labrum.  相似文献   

12.
Morphology of the ventral nerve cord of the hawkmoth, Manduca sexta (Lepidoptera : Sphingidae), changes at the larval-pupal transition as several separate larval ganglia fuse to form single ganglia characteristic of the adult. We examined in detail the time course of ganglionic fusion. Changes in the relative positions of the ganglia were studied by staining the tissue with methylene or toluidine blue. Alterations in the positions and structure of individual neurons were studied by filling neurons with a cobalt-lysine complex. The first gross morphological change, anterior movement of the first abdominal ganglion, is visible within the first 24 hr after pupal ecdysis. Adult ventral nerve cord morphology is recognizable 6 days later, approximately 12 days before the adult will emerge. The sequence in which the individual ganglia fuse is invariant. During ganglionic fusion, the neuronal cell bodies and associated neuropil move out of their former ganglionic sheath and through the sheath covering the connectives. Axons between the fusing ganglia form loops in the shortening connectives. The presence of looping axons is a morphological feature that identifies the boundaries between ganglia during intermediate stages of fusion. Some individual adult neurons also show looped axons at the boundaries of fused ganglia. These axonal loops may be a valuable morphological marker by which neurons can be characterized as conserved neurons.  相似文献   

13.
Intracellular lipid-binding proteins (iLBPs) are small cytoplasmic proteins that specifically interact with hydrophobic ligands. Fatty acid-binding proteins (FABPs), cellular retinoic acid-binding proteins (CRABPs) and cellular retinol-binding proteins (CRBPs) belong to the iLBP family. A recently identified insect (Manduca sexta) iLBP has been reported to possibly represent an invertebrate CRABP mimicking the role of CRABPs in vertebrate organisms. The presence in this protein of the characteristic binding triad residues involved in the interaction with ligand carboxylate head groups, a feature pertaining to several FABPs and to CRABPs, and the close phylogenetic relationships with both groups of vertebrate heart-type FABPs and CRBPs/CRABPs, makes it difficult to assign it to either FABPs or CRABPs. However, its negligible interaction with retinoic acid and high affinity (K(d) values in the 10(-8) M range) for fatty acids have been established by means of direct and competitive binding assays. As shown by phylogenetic analysis, the M. sexta iLBP belongs to a wide group of invertebrate iLBPs, which, besides being closely related phylogenetically, share distinctive features, such as the conservation of chemically distinct residues in their amino acid sequences and the ability to bind fatty acids. Our results are in keeping with the lack of cellular retinoid-binding proteins in invertebrates and with their later appearance during the course of chordate evolution.  相似文献   

14.
《Insect Biochemistry》1986,16(1):143-147
The cellular mechanism of action of the cerebral neuropeptide, prothoracicotropic hormone (PTTH), was investigated in vitro using prothoracic glands from the tobacco hornworm, Manduca sexta. An involvement of cyclic AMP (cAMP) in PTTH-stimulated ecdysone synthesis was demonstrated as follows: (a) the steroidogenic effect of PTTH on prothoracic glands of day 3 fifth instar larvae and day 0 pupae was mimicked by agents (1-methyl-3-isobutylxanthine, dibutyryl cAMP and forskolin) which act by increasing intracellular levels of cAMP; and (b) PTTH stimulated the formation of cAMP in glands from both stages in a rapid, dose-dependent manner. However, a significant accumulation of cAMP in response to PTTH occurred only in larval prothoracic glands. In pupal glands, effects of the neuropeptide on cAMP synthesis were seen only in the presence of a phosphodiesterase inhibitor. Although cAMP is involved in PTTH action at both stages, it thus appears that the developmental state of the prothoracic glands influences the degree to which cAMP accumulates in response to the neurohormone. In addition to cAMP, it appears from the following that Ca2+ plays an essential role in mediating the steroidogenic effects of PTTH: (a) PTTH-stimulated ecdysone synthesis was blocked by omission of Ca2+ from the incubation medium; and (b) ecdysone synthesis was stimulated by the calcium ionophore A23187. Agents which act by increasing intracellular levels of cAMP enhanced ecdysone synthesis equally well in both the presence and absence of extracellular calcium. By contrast, cAMP formation stimulated by both PTTH and A23187 was completely dependent upon extracellular Ca2+. The results suggest a primary role for Ca2+ in mediating PTTH-stimulated synthesis of cAMP, with the cyclic nucleotide in turn stimulating ecdysone synthesis.  相似文献   

15.
Ecdysteroidogenesis in Manduca sexta prothoracic glands is regulated by a set of bioregulatory molecules, including prothoracicotropic hormone (PTTH) and a protein factor present in larval hemolymph, and by the competence of the glands to synthesize ecdysteroids in response to those molecules. A larval molting bioassay was used to assess the in vivo activity of Manduca PTTHs. Crude PTTH, big PTTH, and small PTTH each elicited a larval molt in head-ligated larvae. However, big PTTH was approximately 10-fold more potent than crude PTTH, which was, in turn, several orders of magnitude more potent than small PTTH. When big and small PTTH were combined, the molting response was similar to that elicited with crude PTTH. The chemical nature of the hemolymph protein factor was also investigated. Injection of [3H]cholesterol into last-instar larvae and fractionation of the radiolabeled hemolymph by gel filtration chromatography revealed three peaks of radioactivity. One peak eluted in fractions containing the hemolymph protein factor, a result consistent with the notion that the factor transports a sterol substrate. The possibility that the factor is a 3(2)-ketoreductase was investigated by assessing the effect of the factor on the accumulation of RIA-detectable ecdysteroids in prothoracic-gland-conditioned medium. Three of five preparations of the factor significantly enhanced the amount of RIA-detectable ecdysteroids in conditioned medium, indicating that at least some preparations of the factor may contain ketoreductase activity. The above findings are discussed in the context of current hypotheses of how bioregulatory molecules interact with the prothoracic glands to regulate ecdysteroidogenesis in Manduca.  相似文献   

16.
17.
《Insect Biochemistry》1986,16(1):149-155
Regulation of the haemolymph titres of ecdysteroids and the juvenile hormones (JH) during larval-pupal development of the tobacco hornworm, Manduca sexta, involves the interendocrine control of the synthesis of each hormone by the other. Temporal relationships between the ecdysteroid titre peaks in the fourth and early fifth larval instar and the increases in corpora allata (CA) activity at these times suggests that ecdysteroids are evoking the increases. Incubation of brain-corpora cardiaca-corpora allata (Br-CC-CA) complexes and isolated CA from these stages with 20-hydroxyecdysone (20-HE) revealed that 20-HE stimulates CA activity and that it does this indirectly via the Br-CC. The resulting increase in the JH titre after the commitment (first) peak in the fifth instar stimulates the fat body to secrete a factor which appears to be the same as a haemolymph stimulatory factor for the prothoracic glands. This moiety acts as a secondary effector that modulates the activity of the prothoracic glands and thus the ecdysteroid titre. These findings together have begun to elucidate the mechanisms by which the principal developmental hormones in the insect interact to regulate postembryonic development.  相似文献   

18.
Scanning electron microscopy of the developing Manduca sexta (Lepidoptera : Sphingidae) embryo reveals that the body wall of the insect undergoes considerable morphogenesis beginning at 20 hr post-oviposition. The elongated 19 hr embryo contracts in length, which gives rise to the formation of rudimentary segments. By 33 hr, many of the appendage anlagen are visible, the presumptive spiracles appear as bifurcate pits and the proctodeum begins invagination. During this same period, prior to katatrepsis, the body walls become established, and the segments and appendages develop. Between 50 and 60 hr post-oviposition, involution of the oral cavity and reorientation of the associated gnathal appendages occurs. During this same period, katatrepsis and provisional dorsal closure take place. Developmental polarity is evident as a distinctive wave of specialization proceeding posterior to anterior in the thorax/abdomen, and anterior to posterior in the head. Configuration of the oral cavity is strikingly prognathous until just prior to eclosion. Two embryonic molts are apparent, as determined by the remnants of ecdysed “embryonic cuticles”.  相似文献   

19.
20.
Eggs of Manduca sexta treated with the ovicide Ov. 165049 turn orange, and the embryos later die. The orange pigmentation is at first confined to the serosa, and is accompanied by pathological changes of serosal cells. Lipid vesicles aggregate and spindle-shaped electron-lucent vesicles-normally forming a single layer below the apical cell surface-greatly accumulate. The mitochondria swell considerably, and their matrices become electron-lucent. Subsequently, the serosal cells develop additional features of necrosis. They form many autophagic vacuoles which contain mostly degradating mitochondria, but also segregated rough endoplasmic reticulum (rER) and glycogen granules. The whole cytoplasm vesiculates, and the cells shrink considerably. The nuclei become less irregular in shape, the chromatin disperses rather evenly whereas the nucleoli persist. Neither chromatin condensation nor the production of apoptotic bodies was observed-further evidence, that the serosal cells die by necrosis rather than apoptosis. At some stage of development the damaged serosa ruptures, retracts from the embryo and forms a sphere beneath it. It is only after the rupture of the serosa, that the embryo also turns orange and disintegrates rapidly. This shows impressively the protective function which the serosa plays for the embryo. Our physiological tests indicate, that the orange pigmentation of the serosa induced by the ovicide results from a disturbance of the tryptophan/ommochrome pathway serving the excretion of potentially toxic metabolites of tryptophan-rich proteins. The results demonstrate first that the serosa represents an important target for ovicide pesticides and second that it plays a vital role as an excretory organ during embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号