首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Containing four LIM domains and an N-terminal half LIM domain, FHL2 has been predicted to have an adaptor function in the formation of higher order molecular complexes in the nucleus and the cytoplasm of cells. We expressed recombinant FHL2 in insect cells using the baculovirus system and used it to isolate direct or indirect interaction partners from the cytosolic fraction of fibroblasts by affinity chromatography. These were identified by their peptide mass fingerprints using MALDI-TOF mass spectrometry. Cytoskeleton-associated proteins present among the bound proteins were shown to co-localise with FHL2 in cell lamellipodia by indirect immunofluorescence staining.  相似文献   

2.
Four and a half LIM domain protein 3 (FHL3) is a member of the family of LIM proteins and is involved in myogenesis, cytoskeleton reconstruction, cell growth and differentiation. The full-length FHL3 cDNA was cloned from human spleen cDNA library and inserted in a prokaryotic expression vector pBV220 and then the recombinant plasmid was transformed into E. coli JM109. The expression of the recombinant protein was induced at 42°C. SDS-PAGE analysis showed that recombinant human FHL3 (rhFHL3) was mainly expressed as an inclusion body. After purification by HisTrap FF crude, the rhFHL3 was renatured by dialysis against renaturing buffer and identified by Western blot analysis using human FHL3 polyclonal antibody. The MTT assay showed that the purified rhFHL3 could inhibit HepG2 cell growth but promote the proliferation of ECV304 cells. In addition, the expression of angiogenin (Ang) gene was increased when ECV304 cells were pretreated with rhFHL3.  相似文献   

3.
火菇素是一种从金针菇FlammulinaVelutipes中分离纯化出来的具有抗癌活性的简单蛋白。用SDS-PAGE系统,通过与已知分子量的标准参照蛋白比较,确定火菇素的分子量为24kDa,这一结果与其氨基酸组成分析相比偏大,进一步通过电喷雾离子化质谱法(ESIMS)分析,精确测定火菇素的分子量为19891.13Da。推测由于火菇素蛋白与SDS的非正常结合是造成蛋白质在SDS-PAGE中迁移变慢导致偏差的原因。  相似文献   

4.
In this study, we report the purification and structure basis of human phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a C-SRC tyrosine kinase (CSK)-binding protein. Human PAG was produced using an insect cell expression system. The PAG was purified by metal affinity, ion exchange, and gel filtration chromatographies. The final purity of gel-purified PAG was evaluated by SDS-PAGE and mass spectrometry. Recombinant human PAG migrates to 60 kDa on SDS-PAGE gel, while native PAG is a 46 kDa transmembrane adapter protein in lipid rafts. Recombinant human PAG has a difference of 2590.7 Da with a calculated mass (47803.41 Da) and an observed mass (50394.1 Da) by mass spectrometry. Consequently, although human PAG sequence shares well-known sites for modifications such as myristoylation, palmitoylation, and tyrosine phosphorylation sites, perhaps the difference suggests the existence of unknown modification sites. We show the high PAG-binding ability with CSK in vitro as well as the human PAG structure characterized by 11 α-helix structures including a 3 kDa transmembrane domain.  相似文献   

5.
Recombinant forms of human perlecan domain I were secreted as proteoglycans by stably transfected human 293 cells. A recombinant domain I-only proteoglycan spanned the 95- to 265-kDa region in SDS-PAGE and appeared to be 160 kDa in denaturing gel filtration. Its glycosaminoglycan (GAG) content was approximately 67% heparan sulfate, and its average GAG chain size of 20 kDa suggested that the true molecular mass of the proteoglycan was 90 kDa. Domain I with enhanced green fluorescent protein fused to its C-terminus had an apparent molecular mass of 210-220 kDa and contained approximately 100% heparan sulfate. Its average GAG chain size (also 20 kDa) suggested a true molecular mass of 117 kDa for this proteoglycan. Its sulfate content of 53-77 mol SO2-4 per mole of protein indicated the presence of one sulfate group per 4-7 GAG sugar residues.  相似文献   

6.
A gene, ClCDA, encoding chitin deacetylase from Colletotrichum lindemuthianum, was optimized according to the codon usage bias of Pichia pastoris and synthesized in vitro by overlap extension PCR. It was secretorily expressed in P. pastoris GS115 using the constitutive expression vector pHMB905A. The expression level reached the highest with 110 mg/l culture supernatant after 72 h of methanol induction, which comprised 77.27 U/mg chitin deacetylase activity. SDS-PAGE, mass spectrometry, and deglycosylation assays demonstrated that partial recombinant protein was glycosylated with an apparent molecular mass of 33 kDa. The amino acid sequences of recombinant proteins were confirmed by mass spectrometry.  相似文献   

7.
Tissue MicroArrays (TMAs) are a versatile tool for high‐throughput protein screening, allowing qualitative analysis of a large number of samples on a single slide. We have developed a customizable TMA system that uniquely utilizes cryopreserved human cardiac samples from both heart failure and donor patients to produce formalin‐fixed paraffin‐embedded sections. Confirmatory upstream or downstream molecular studies can then be performed on the same (biobanked) cryopreserved tissue. In a pilot study, we applied our TMAs to screen for the expression of four‐and‐a‐half LIM‐domain 2 (FHL2), a member of the four‐and‐a‐half LIM family. This protein has been implicated in the pathogenesis of heart failure in a variety of animal models. While FHL2 is abundant in the heart, not much is known about its expression in human heart failure. For this purpose, we generated an affinity‐purified rabbit polyclonal anti‐human FHL2 antibody. Our TMAs allowed high‐throughput profiling of FHL2 protein using qualitative and semiquantitative immunohistochemistry that proved complementary to Western blot analysis. We demonstrated a significant relative reduction in FHL2 protein expression across different forms of human heart failure.  相似文献   

8.
Zhu Z  Becklin RR  Desiderio DM  Dalton JT 《Biochemistry》2001,40(36):10756-10763
The ligand-binding domain (LBD) of the human androgen receptor (hAR LBD), encompassing amino acids (AAs) 647-919, was expressed in Escherichia coli with an N-terminal polyhistidine tag (His(10)-hAR LBD) from a pET-16b vector. The overexpressed protein was initially insoluble in inclusion bodies, and was subsequently solubilized in 8 M guanidine hydrochloride (GdnHCl). The solubilized His(10)-hAR LBD was purified to apparent homogeneity by metal ion affinity chromatography in the presence of 6 M GdnHCl. The isolated protein migrated as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular mass of 33-34 kDa, as expected from the plasmid construct. Immunoblot analysis with C-terminal antibodies raised against a peptide corresponding to the last 19 AAs (AAs 901-919) of hAR revealed that the purified protein contained an immunoreactive epitope present within the AR and was of the appropriate size. Further characterization, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS), showed a single protein species of average mass 34 580 Da, confirming the size and purity of the purified His(10)-hAR LBD. Detailed tryptic peptide mapping analysis, using MALDI/TOF-MS, identified a total of eight peptides with a 30% coverage of the LBD, including the last tryptic peptide in the hAR sequence. These data confirm that the purified protein was the intact hAR LBD. AA sequencing of these tryptic peptides, using an HPLC-coupled electrospray ionization ion trap mass spectrometer (LC/ESI-ITMS and MS/MS), unambiguously confirmed that the peptides were from the hAR LBD. The purified His(10)-hAR LBD in 6 M GdnHCl could be renatured as determined by ligand-binding activity, with a similar equilibrium dissociation constant (K(d)) for [(3)H]-mibolerone and a similar steroid specificity to the AR isolated from rat ventral prostate.  相似文献   

9.
Recombinant murine MRP14 (mMRP14) was produced in Escherichia coli using the pGEX expression system. The mass of fusion protein, by electrospray ionization-mass spectrometry (ESI/MS), was 39,213 Da which compares well with the theoretical mass (39,210.4 Da). Thrombin digestion of fusion protein was expected at a cloned thrombin consensus sequence (. LVPRGS. ) located between glutathione S-transferase and mMRP14. Analysis of products of digestion by C4 reverse-phase HPLC and SDS-PAGE/Western blotting revealed two immunoreactive cleavage products with molecular weights around 13, 000. Masses of the two proteins determined by ESI/MS were 13,062 and 11,919 Da. The larger product corresponded to the expected mass of recombinant mMRP14 (13,061.9 Da). Analysis of the protein sequence of recombinant mMRP14 revealed a thrombin-like consensus sequence (. NNPRGH. ) located close to the C-terminus. The smaller protein corresponded to a truncated form of rec mMRP14 (rec MRP141-102) with a calculated mass of 11,918.6 Da. Optimization of the cleavage conditions resulted in >95% full-length rec mMRP14. Native mMRP14 contains one intramolecular disulfide bond between Cys79 and Cys90. The full-length recombinant protein was renatured and oxidized in ammonium acetate (pH approximately 7) for 96 h and formed >95% of the native intramolecular disulfide-bonded form. MRP141-102 bound substantially less 65Zn2+ compared to native mMRP14 or rec mMRP14 after transfer to polyvinylidene difluoride and incubation with 65ZnCl2, implicating the His residues located within the C-terminal domain in Zn2+ binding.  相似文献   

10.
11.
FHL2转录激活结构域的定位   总被引:2,自引:0,他引:2  
LIM蛋白家族成员FHL2 (fourandhalfLIMdomainprotein)在转录调节、细胞凋亡及肿瘤的发生发展中都起着重要作用。利用GAL4转录因子中的DNA结合结构域 (DBD)和含有与DBD结合序列的荧光素酶报告基因(GAL4 LUC)构建了哺乳动物细胞转录激活系统 ,并利用该系统定位了FHL2的转录激活结构域。首先将GAL4 DBD序列以正确读框插入到pcDNA3载体的多克隆位点中 ,构建成真核表达载体pDBD ,再将野生型FHL2及其不同片段以正确读框与pDBD中GAL4 DBD序列融合 ,构建成野生型FHL2及其缺失突变体表达载体。将这些表达载体分别瞬时转染 2 93T胚胎肾细胞 ,野生型FHL2及其缺失突变体都得到了表达。利用GAL4 荧光素酶报告基因对野生型FHL2及其不同突变体的转录激活活性检测表明 ,在 2 93T胚胎肾细胞和乳腺癌MCF 7细胞中 ,野生型FHL2具有转录激活活性 ,缺失N端半个LIM结构域使FHL2转录激活活性降低 ,缺失C末端第二个LIM结构域对FHL2的转录激活功能影响不大 ,缺失C末端最后一个LIM结构域则使FHL2的转录激活功能完全丧失 ,而C末端缺失 2个LIM结构域使FHL2转录激活活性又有所恢复。这说明FHL2C末端最后一个LIM结构域对其转录激活功能是必需的 ,而C末端第二个LIM结构域可能对FHL2的转录激活功能有负调控作用 ,这种负调控作用取决于  相似文献   

12.
A human brain cDNA clone coding for a novel PDZ-domain protein of 124 amino acids has been previously isolated in our laboratory. The protein was termed GIP (glutaminase-interacting protein) because it interacts with the C-terminal region of the human brain glutaminase L. Here we report the heterologous expression of GIP as a histidine-tagged fusion protein in Escherichia coli cells. The induction conditions (temperature and isopropyl beta-d-thiogalactopyranoside concentrations) were optimized in such a way that GIP accounted for about 20% of the total E. coli protein. A simple and rapid procedure for purification was developed, which yielded 17 mg of purified GIP per liter of bacterial cell culture. The apparent molecular mass of the protein by SDS-PAGE was 16 kDa, whereas in native form it was determined to be 28 kDa, which suggests dimer formation. The nature and integrity of the recombinant protein were verified by mass spectrometry analysis. The functionality of the GIP protein was tested with an in vitro activity assay: after being pulled down with glutathione S-transferase-glutaminase, GIP was revealed by Western blot using anti-GIP antibodies. Furthermore, the glutaminase activity in crude rat liver extracts was inhibited by the presence of recombinant purified GIP protein.  相似文献   

13.
Using a yeast two-hybrid library screen, we have identified that the heart specific FHL2 protein, four-and-a-half LIM protein 2, interacted with human DNA-binding nuclear protein, hNP220. Domain studies by the yeast two-hybrid interaction assay revealed that the second LIM domain together with the third and the fourth LIM domains of FHL2 were responsible to the binding with hNP220. Using green fluorescent protein (GFP)-FHL2 and blue fluorescent protein (BFP)-hNP220 fusion proteins co-expressed in the same cell, we demonstrated a direct interaction between FHL2 and hNP220 in individual nucleus by two-fusion Fluorescence Resonance Energy Transfer (FRET) assay. Besides, Western blot analysis using affinity-purified anti-FHL2 antipeptide antibodies confirmed a 32-kDa protein of FHL2 in heart only. Virtually no expression of FHL2 protein was detected in brain, liver, lung, kidney, testis, skeletal muscle, and spleen. Moreover, the expression of FHL2 protein was also detectable in the human diseased heart tissues. Our results imply that FHL2 protein can shuttle between cytoplasm and nucleus and may act as a molecular adapter to form a multicomplex with hNP220 in the nucleus, thus we speculate that FHL2 may be particularly important for heart muscle differentiation and the maintenance of the heart phenotype.  相似文献   

14.
15.
In the yeast two-hybrid library screening, the heart-specific FHL2 protein was found to interact with hCDC47. In vitro interaction study between FHL2 protein and hCDC47 was demonstrated. From the results of domain studies by the yeast two-hybrid assay, the second and third LIM domains in conjunction with the first half LIM domain of FHL2 were identified to be important in binding with hCDC47. Besides, in Northern blot hybridization of human cancer cell lines, the highest FHL2 mRNA expression was detected in colorectal adenocarcinoma SW480 and HeLa cell S3. Our results imply that FHL2 protein may associate with cancer development and may act as a molecular adapter to form a multicomplex with hCDC47 in the nucleus, thus it plays an important role in the specification or maintenance of the terminal differentiated phenotype of heart muscle cells.  相似文献   

16.
LIM domain proteins are found to be important regulators in cell growth, cell fate determination, cell differentiation and remodeling of the cell cytoskeleton. Human Four-and-a-half LIM-only protein 3 (FHL3) is a type of LIM-only protein that contains four tandemly repeated LIM motifs with an N-terminal single zinc finger (half LIM motif). FHL3 expresses predominantly in human skeletal muscle. In this report, FHL3 was shown to be a novel interacting partner of FHL2 using the yeast two-hybrid assay. Furthermore, site-directed mutagenesis of FHL3 indicated that the LIM2 of FHL3 is the essential LIM domain for interaction with FHL2. Green fluorescent protein (GFP) was used to tag FHL3 in order to study its distribution during myogenesis. Our result shows that FHL3 was localized in the focal adhesions and nucleus of the cells. FHL3 mainly stayed in the focal adhesion during myogenesis. Moreover, using site-directed mutagenesis, the LIM1 of FHL3 was identified as an essential LIM domain for its subcellular localization. Mutants of GFP have given rise to a novel technique, two-fusion fluorescence resonance energy transfer (FRET), in the determination of protein-protein interaction at particular subcellular locations of eukaryotic cells. To determine whether FHL2 and FHL3 can interact with one another and to locate the site of this interaction in a single intact mammalian cell, we fused FHL2 and FHL3 to different mutants of GFP and studied their interactions using FRET. BFP/GFP fusion constructs were cotransfected into muscle myoblast C2C12 to verify the colocalization and subcellular localization of FRET. We found that FHL2 and FHL3 were colocalized in the mitochondria of the C2C12 cells and FRET was observed by using an epi-fluorescent microscope equipped with an FRET specific filter set.  相似文献   

17.
Epidermal growth factor (EGF) receptor ligands such as EGF and transforming growth factor-alpha (TGF-alpha) play an important role in controlling the proliferation, survival, morphology, and motility of colonic epithelial cells. There is also increasing evidence that growth factors and extracellular matrix (ECM) proteins cooperate to regulate these cellular processes. We have reported previously that autocrine TGF-alpha and an unidentified ECM protein in the serum-free conditioned medium of the human colon carcinoma cell line LIM1215 synergize to induce spreading of these cells in low-density cultures. We have now purified the ECM protein secreted by LIM1215 cells and show that it synergizes with EGF to induce spreading of LIM1215 cells and other human cell lines from the colon and other tissues. The purified ECM migrated as a single protein band with an apparent molecular mass of approximately 800 kDa on SDS-PAGE under nonreducing conditions and, under reducing conditions, as three protein bands of approximately 360, 210, and 200 kDa. Immunoblotting experiments and mass spectrometry analysis of tryptic digests on the purified protein identified the 360-, 210-, and 200-kDa protein bands as laminin alpha5, beta1, and gamma1 chains, respectively, indicating that LIM1215 cells secrete laminin-10 (alpha5 beta1 gamma1). In serum-free medium, LIM1215 cells adhere to laminin-10 primarily via alpha2 beta1 and alpha3 beta1 integrin receptors. EGF-induced spreading of LIM1215 cells on laminin-10 is partially inhibited by pretreatment of the cells with blocking antibodies directed against integrin alpha3 or beta1 but not alpha2, alpha6, or beta4 subunits. Spreading is almost completely inhibited by blocking alpha3 + alpha2, alpha3 + alpha6, or beta1 + beta4 integrin chains and results in cell death. Increased spreading in the presence of EGF correlates with up-regulation of alpha6 beta4 integrins in these cells after exposure to EGF. These results indicate that colon cancer cells attach and spread on laminin-10 via multiple integrin receptors and suggest a critical role for alpha3 beta1 integrins in the spreading response. Together, our results support the concept that the adhesive properties of colon cancer cells are modulated by autocrine production of TGF-alpha and laminin-10 and autocrine induction of appropriate integrins.  相似文献   

18.
We present here a new approach that enabled the identification of a new protein from a bacterial strain with unknown genomic background using a combination of inverted PCR with degenerate primers derived from N-terminal protein sequences and high resolution peptide mass determination of proteolytic digests from two-dimensional electrophoretic separation. Proteins of the sulfate-reducing bacterium Desulfotignum phosphitoxidans specifically induced in the presence of phosphite were separated by two-dimensional gel electrophoresis as a series of apparent soluble and membrane-bound isoforms with molecular masses of approximately 35 kDa. Inverted PCR based on N-terminal sequences and high resolution peptide mass fingerprinting by Fourier transform-ion cyclotron resonance mass spectrometry provided the identification of a new NAD(P) epimerase/dehydratase by specific assignment of peptide masses to a single ORF, excluding other possible ORF candidates. The protein identification was ascertained by chromatographic separation and sequencing of internal proteolytic peptides. Metal ion affinity isolation of tryptic peptides and high resolution mass spectrometry provided the identification of five phosphorylations identified in the domains 23-47 and 91-118 of the protein. In agreement with the phosphorylations identified, direct molecular weight determination of the soluble protein eluted from the two-dimensional gels by mass spectrometry provided a molecular mass of 35,400 Da, which is consistent with an average degree of three phosphorylations.  相似文献   

19.
FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl(2), as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8+/-1.3nmol of FAD synthesized/min/mg protein and exhibited a K(M) value for FMN of 1.5+/-0.3microM. This is the first report on characterization of human FADS, and the first cloning and over-expression of FADS from an organism higher than yeast.  相似文献   

20.
The gene coding for ferric enterobactin binding protein from E. coli O157:H7 was amplifi ed. This gene was cloned and expressed as C-terminal His (6)-tagged protein. The SDS-PAGE analysis of the total protein revealed only two distinct bands, with molecular masses of 31kDa and 34kDa. The Ni-NTA chromatography purifi ed FepB and the osmotically shocked periplasmic fraction of IPTG induced cells showed only a single band of 31 kDa. Polyclonal mouse antibody was raised against the recombinant protein during 4 weeks after immunization. Western blot analysis of the recombinant FepB with mouse antiserum revealeda single band of 31 kDa. Identification and purification of FepB helped reveal its appropriate molecular mass. Polyclonal antibody raised against the recombinant protein reacted with bacterial FepB. The recombinant protein FepB could have a protective effect against E. coli O157:H7 and might be useful as an effective vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号