共查询到20条相似文献,搜索用时 0 毫秒
1.
As a novel superfamily of type III polyketide synthases in microbes, four genes csyA, csyB, csyC, and csyD, were found in the genome of Aspergillus oryzae, an industrially important filamentous fungus. In order to analyze their functions, we carried out the overexpression of csyA under the control of α-amylase promoter in A. oryzae and identified 3,5-dihydroxybenzoic acid (DHBA) as the major product. Feeding experiments using 13C-labeled acetates confirmed that the acetate labeling pattern of DHBA coincided with that of orcinol derived from orsellinic acid, a polyketide formed by the condensation and cyclization of four acetate units. Further oxidation of methyl group of orcinol by the host fungus could lead to the production of DHBA. Comparative molecular modeling of CsyA with the crystal structure of Neurospora crassa 2′-oxoalkylresorcylic acid synthase indicated that CsyA cavity size can only accept short-chain acyl starter and tetraketide formation. Thus, CsyA is considered to be a tetraketide alkyl-resorcinol/resorcylic acid synthase. 相似文献
2.
The first two steps of aflatoxin biosynthesis are catalyzed by the HexA/B and by the Pks protein. The phylogenetic analysis clearly distinguished fungal HexA/B from FAS subunits and
from other homologous proteins. The phylogenetic trees of the HexA and HexB set of proteins share the same clustering. Proteins involved in the synthesis of fatty acids or in the
aflatoxin or sterigmatocystin biosynthesis cluster separately. The Pks phylogenetic tree also differentiates the aflatoxin-related polypeptide sequences from those of other kinds of
secondary metabolism. The function of some of the A. flavus Pks homologues may be deduced from the phylogenetic analysis. The conserved sequence motifs of protein domains shared by HexA/B
and Pks - namely, β-polyketide synthase (KS), acetyl transferase (AT) and acyl carrier protein (ACP) - have been identified, and the HexA/B and Pks involved in aflatoxin biosynthesis have
been distinguished from those involved in primary metabolism or other kinds of secondary metabolism. 相似文献
3.
2-羟基丁酸(2-hydroxybutyric acid,2-HBA)是合成生物可降解材料和各种药物的重要中间体,化学法合成的外消旋2-HBA需要去消旋才能获得光学纯对映异构体,应用于工业.文中通过在大肠杆菌Escherichia coli BL21(DE3)中共表达苏氨酸脱氨酶(Threonine deaminase... 相似文献
4.
In addition to the 20 protein amino acids that are vital to human health, hundreds of naturally occurring amino acids, known as non-proteinogenic amino acids (NPAAs), exist and can enter the human food chain. Some NPAAs are toxic through their ability to mimic protein amino acids and this property is utilised by NPAA-containing plants to inhibit the growth of other plants or kill herbivores. The NPAA l-azetidine-2-carboxylic acid (Aze) enters the food chain through the use of sugar beet (Beta vulgaris) by-products as feed in the livestock industry and may also be found in sugar beet by-product fibre supplements. Aze mimics the protein amino acid l-proline and readily misincorporates into proteins. In light of this, we examined the toxicity of Aze to mammalian cells in vitro. We showed decreased viability in Aze-exposed cells with both apoptotic and necrotic cell death. This was accompanied by alterations in endosomal–lysosomal activity, changes to mitochondrial morphology and a significant decline in mitochondrial function. In summary, the results show that Aze exposure can lead to deleterious effects on human neuron-like cells and highlight the importance of monitoring human Aze consumption via the food chain. 相似文献
8.
Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named AT DYN10) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/β hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/β fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser 651 residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates. 相似文献
9.
The key enzymes of lipid biosynthesis in oleaginous filamentous fungi exist as metabolons. However, the existence of a similar organization in other groups of oleaginous microorganisms is still unknown. In this study, we confirmed the occurrence of two separate and distinct lipogenic metabolons in a thraustochytrid, Aurantiochytrium SW1. These involve the Type I Fatty Acid Synthase (FAS) pathway, consisting of six enzymes: fatty acid synthase, malic enzyme (ME), ATP: citrate lyase (ACL), acetyl-CoA carboxylase (ACC), malate dehydrogenase (MD) and pyruvate carboxylase (PC), and the Polyketide Synthase-like (PKS) pathway, consisting of PKS subunits a, b, c, glucose-6-phosphate dehydrogenase (G6PDH) 6-phosphogluconate dehydrogenase (6PGDH), ACL and ACC. This suggests that the NADPH requirement for the FAS pathway is primarily generated and channelled by ME whereas G6PDH and 6PGDH fulfil this role for the PKS pathway. Diminished biosynthesis of palmitic acid (16:0), docosahexaenoic acid (22:6 n-3, DHA) and docosapentaenoic acid (22:5 n-6, DPA) correlated with the dissociation of their respective metabolons thereby suggesting that regulation of the pathways is achieved through the formation and dissociation of the metabolons. 相似文献
10.
Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases (PKSs). Understanding the biochemistry of tetracycline PKSs is an important step toward the rational and combinatorial manipulation of tetracycline biosynthesis. To this end, we have sequenced the gene cluster of oxytetracycline (oxy and otc genes) PKS genes from Streptomyces rimosus. Sequence analysis revealed a total of 21 genes between the otrA and otrB resistance genes. We hypothesized that an amidotransferase, OxyD, synthesizes the malonamate starter unit that is a universal building block for tetracycline compounds. In vivo reconstitution using strain CH999 revealed that the minimal PKS and OxyD are necessary and sufficient for the biosynthesis of amidated polyketides. A novel alkaloid (WJ35, or compound 2) was synthesized as the major product when the oxy-encoded minimal PKS, the C-9 ketoreductase (OxyJ), and OxyD were coexpressed in CH999. WJ35 is an isoquinolone compound derived from an amidated decaketide backbone and cyclized with novel regioselectivity. The expression of OxyD with a heterologous minimal PKS did not afford similarly amidated polyketides, suggesting that the oxy-encoded minimal PKS possesses novel starter unit specificity. 相似文献
11.
Benzalacetone synthase (BSA) is a novel plant-specific polyketide synthase that catalyzes a one step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 skeleton of phenylbutanoids in higher plants. A cDNA encoding BAS was for the first time cloned and sequenced from rhubarb (Rheum palmatum), a medicinal plant rich in phenylbutanoids including pharmaceutically important phenylbutanone glucoside, lindleyin. The cDNA encoded a 42-kDa protein that shares 60-75% amino-acid sequence identity with other members of the CHS-superfamily enzymes. Interestingly, R. palmatum BAS lacks the active-site Phe215 residue (numbering in CHS) which has been proposed to help orient substrates and intermediates during the sequential condensation of 4-coumaroyl-CoA with malonyl-CoA in CHS. On the other hand, the catalytic cysteine-histidine dyad (Cys164-His303) in CHS is well conserved in BAS. A recombinant enzyme expressed in Escherichia coli efficiently afforded benzalacetone as a single product from 4-coumaroyl-CoA and malonyl-CoA. Further, in contrast with CHS that showed broad substrate specificity toward aliphatic CoA esters, BAS did not accept hexanoyl-CoA, isobutyryl-CoA, isovaleryl-CoA, and acetyl-CoA as a substrate. Finally, besides the phenylbutanones in rhubarb, BAS has been proposed to play a crucial role for the construction of the C6-C4 moiety of a variety of natural products such as medicinally important gingerols in ginger plant. 相似文献
12.
Methylthioalkylmalate synthase (MAM) catalyzes the committed step in the side chain elongation of Met, yielding important precursors for glucosinolate biosynthesis in Arabidopsis thaliana and other Brassicaceae species. MAM is believed to have evolved from isopropylmalate synthase (IPMS), an enzyme involved in Leu biosynthesis, based on phylogenetic analyses and an overlap of catalytic abilities. Here, we investigated the changes in protein structure that have occurred during the recruitment of IPMS from amino acid to glucosinolate metabolism. The major sequence difference between IPMS and MAM is the absence of 120 amino acids at the C-terminal end of MAM that constitute a regulatory domain for Leu-mediated feedback inhibition. Truncation of this domain in Arabidopsis IPMS2 results in loss of Leu feedback inhibition and quaternary structure, two features common to MAM enzymes, plus an 8.4-fold increase in the k(cat)/K(m) for a MAM substrate. Additional exchange of two amino acids in the active site resulted in a MAM-like enzyme that had little residual IPMS activity. Hence, combination of the loss of the regulatory domain and a few additional amino acid exchanges can explain the evolution of MAM from IPMS during its recruitment from primary to secondary metabolism. 相似文献
14.
Zearalenone, a mycotoxin produced by several Fusarium spp., is most commonly found as a contaminant in stored grain and has chronic estrogenic effects on mammals. Zearalenone is a polyketide derived from the sequential condensation of multiple acetate units by a polyketide synthase (PKS), but the genetics of its biosynthesis are not understood. We cloned two genes, designated ZEA1 and ZEA2, which encode polyketide synthases that participate in the biosynthesis of zearalenone by Gibberella zeae (anamorph Fusarium graminearum). Disruption of either gene resulted in the loss of zearalenone production under inducing conditions. ZEA1 and ZEA2 are transcribed divergently from a common promoter region. Quantitative PCR analysis of both PKS genes and six flanking genes supports the view that the two polyketide synthases make up the core biosynthetic unit for zearalenone biosynthesis. An appreciation of the genetics of zearalenone biosynthesis is needed to understand how zearalenone is synthesized under field conditions that result in the contamination of grain. 相似文献
15.
Fumonisins are toxins associated with several mycotoxicoses and are produced by the maize pathogen Gibberella fujikuroi mating population A (MP-A). Biochemical analyses indicate that fumonisins are a product of either polyketide or fatty acid biosynthesis. To isolate a putative polyketide synthase (PKS) gene involved in fumonisin biosynthesis, we employed PCR with degenerate PKS primers and a cDNA template prepared from a fumonisin-producing culture of G. fujikuroi. Sequence analysis of the single PCR product and its flanking DNA revealed a gene (FUM5) with a 7.8-kb coding region. The predicted FUM5 translation product was highly similar to bacterial and fungal Type I PKSs. Transformation of a cosmid clone carrying FUM5 into G. fujikuroi enhanced production in three strains and restored wild-type production in a fumonisin nonproducing mutant. Disruption of FUM5 reduced fumonisin production by over 99% in G. fujikuroi MP-A. Together, these results indicate that FUM5 is a PKS gene required for fumonisin biosynthesis. 相似文献
16.
Chalcone synthase (CHS) is pivotal for the biosynthesis of flavonoid antimicrobial phytoalexins and anthocyanin pigments in plants. It produces chalcone by condensing one p-coumaroyl- and three malonyl-coenzyme A thioesters into a polyketide reaction intermediate that cyclizes. The crystal structures of CHS alone and complexed with substrate and product analogs reveal the active site architecture that defines the sequence and chemistry of multiple decarboxylation and condensation reactions and provides a molecular understanding of the cyclization reaction leading to chalcone synthesis. The structure of CHS complexed with resveratrol also suggests how stilbene synthase, a related enzyme, uses the same substrates and an alternate cyclization pathway to form resveratrol. By using the three-dimensional structure and the large database of CHS-like sequences, we can identify proteins likely to possess novel substrate and product specificity. The structure elucidates the chemical basis of plant polyketide biosynthesis and provides a framework for engineering CHS-like enzymes to produce new products. 相似文献
17.
The polyketide synthase associated with the biosynthesis of enediyne-containing calicheamicin contains a putative phosphopantetheinyl transferase (PPTase) domain. By cloning and expressing the C-terminal region of the polyketide synthase and in vitro phosphopantetheinylation assay, we found that the PPTase domain exhibits preferred substrate specificity towards acyl and peptidyl carrier proteins in fatty acid and non-ribosomal peptide synthesis over its cognate partner. We also found evidence suggesting that the PPTase domain adopts a pseudo-trimeric structure, distinct from the pseudo-dimeric structure of type II PPTases. The results revealed a novel type of PPTase with unique structure and substrate specificity, and suggested that the polyketide synthase probably acquired the PPTase domain from a primary metabolic pathway in evolution. 相似文献
18.
Mycelia of Gibberella zeae (anamorph, Fusarium graminearum), an important pathogen of cereal crops, are yellow to tan with white to carmine red margins. We isolated genes encoding the following two proteins that are required for aurofusarin biosynthesis from G. zeae: a type I polyketide synthase (PKS) and a putative laccase. Screening of insertional mutants of G. zeae, which were generated by using a restriction enzyme-mediated integration procedure, resulted in the isolation of mutant S4B3076, which is a pigment mutant. In a sexual cross of the mutant with a strain with normal pigmentation, the pigment mutation was linked to the inserted vector. The vector insertion site in S4B3076 was a HindIII site 38 bp upstream from an open reading frame (ORF) on contig 1.116 in the F. graminearum genome database. The ORF, designated Gip1 (for Gibberella zeae pigment mutation 1), encodes a putative laccase. A 30-kb region surrounding the insertion site and Gip1 contains 10 additional ORFs, including a putative ORF identified as PKS12 whose product exhibits about 40% amino acid identity to the products of type I fungal PKS genes, which are involved in pigment biosynthesis. Targeted gene deletion and complementation analyses confirmed that both Gip1 and PKS12 are required for aurofusarin production in G. zeae. This information is the first information concerning the biosynthesis of these pigments by G. zeae and could help in studies of their toxicity in domesticated animals. 相似文献
19.
We have characterized an acyl carrier protein (ACP) presumed to be involved in the synthesis of fatty acids in Streptomyces coelicolor A3(2). This is the third ACP to have been identified in S. coelicolor; the two previously characterized ACPs are involved in the synthesis of two aromatic polyketides: the blue-pigmented antibiotic actinorhodin and a grey pigment associated with the spore walls. The three ACPs are clearly related. The presumed fatty acid synthase (FAS) ACP was partially purified, and the N-terminal amino acid sequence was obtained. The corresponding gene (acpP) was cloned and sequenced and found to lie within 1 kb of a previously characterized gene (fabD) encoding another subunit of the S. coelicolor FAS, malonyl coenzyme A:ACP acyl-transferase. Expression of S. coelicolor acpP in Escherichia coli yielded several different forms, whose masses corresponded to the active (holo) form of the protein carrying various acyl substituents. To test the mechanisms that normally prevent the FAS ACP from substituting for the actinorhodin ACP, acpP was cloned in place of actI-open reading frame 3 (encoding the actinorhodin ACP) to allow coexpression of acpP with the act polyketide synthase (PKS) genes. Pigmented polyketide production was observed, but only at a small fraction of its former level. This suggests that the FAS and PKS ACPs may be biochemically incompatible and that this could prevent functional complementation between the FAS and PKSs that potentially coexist within the same cells. 相似文献
20.
Chalcone synthase (CHS) related type III plant polyketide synthases (PKSs) are likely to be involved in the biosynthesis of diarylheptanoids (e.g. curcumin and polycyclic phenylphenalenones), but no such activity has been reported. Root cultures from Wachendorfia thyrsiflora (Haemodoraceae) are a suitable source to search for such enzymes because they synthesize large amounts of phenylphenalenones, but no other products that are known to require CHSs or related enzymes (e.g. flavonoids or stilbenes). A homology-based RT-PCR strategy led to the identification of cDNAs for a type III PKS sharing only approximately 60% identity with typical CHSs. It was named WtPKS1 ( W. thyrsiflora polyketide synthase 1). The purified recombinant protein accepted a large variety of aromatic and aliphatic starter CoA esters, including phenylpropionyl- and side-chain unsaturated phenylpropanoid-CoAs. The simplest model for the initial reaction in diarylheptanoid biosynthesis predicts a phenylpropanoid-CoA as starter and a single condensation reaction to a diketide. Benzalacetones, the expected release products, were observed only with unsaturated phenylpropanoid-CoAs, and the best results were obtained with 4-coumaroyl-CoA (80% of the products). With all other substrates, WtPKS1 performed two condensation reactions and released pyrones. We propose that WtPKS1 catalyses the first step in diarylheptanoid biosynthesis and that the observed pyrones are derailment products in the absence of downstream processing proteins. 相似文献
|