首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To test the hypothesis that c-Jun NH2-terminal kinase (JNK) and nitric oxide (NO)-mediated signaling plays an important role in muscle cell apoptosis, we examined the contribution of these molecules in muscle cell apoptosis during cardiotoxin (ctx)-induced muscle injury in mice. Compared to controls, where no apoptosis was detected, the percent of muscle cell apoptosis rose significantly (P < 0.05) at 4 h (27%) after ctx-treatment and increased further progressively up to 16 h posttreatment (80%), before it fell again at 24 h posttreatment (38%). Initiation of apoptosis was preceded by JNK activation and elevated levels of B-cell lymphoma-2 (BCL-2) in the mitochondrial fractions (BAX levels remained unaffected). Ctx treatment also resulted in the inactivation of BCL-2 through phosphorylation at serine 70, thereby perturbing the BAX/BCL-2 rheostat, and the subsequent activation of the cytochrome c-mediated death pathway. Concomitant administration of SP600125, a selective JNK inhibitor, or aminoguanidine (AG), a selected inducible nitric oxide synthase (iNOS) inhibitor, effectively diminished BCL-2 phosphorylation, suppressed cytochrome c release from mitochondria and caspase activation, and significantly prevented ctx-induced muscle cell apoptosis. In additional studies, we examined the role of testosterone in preventing such ctx-induced muscle cell apoptosis. Collectively, the present study emphasizes the role of a new signal transduction pathway involving JNK and iNOS that promotes ctx-induced myocyte apoptosis by provoking BCL-2 phosphorylation, leading to its inactivation, and subsequent activation of the intrinsic pathway signaling. Testosterone therapy has no protective effect in acute muscle injury associated with increased muscle cell death after ctx-treatment.  相似文献   

2.
This study investigates the role of p38 MAPK, inducible nitric oxide synthase (iNOS), and the intrinsic pathway signaling in male germ cell death in rats after hormonal deprivation by a potent GnRH antagonist treatment. Germ cell apoptosis, involving exclusively middle (VII-VIII) stages, was activated by d 5 after GnRH antagonist treatment. Initiation of germ cell apoptosis was preceded by p38 MAPK activation and induction of iNOS. p38 MAPK activation and iNOS induction were further accompanied by a marked perturbation of the BAX/BCL-2 rheostat, cytochrome c, and DIABLO release from mitochondria, caspase activation, and poly(ADP-ribose) polymerase cleavage. Concomitant administration of aminoguanidine, a selective iNOS inhibitor, significantly prevented hormone deprivation-induced germ cell apoptosis. Inhibitors of iNOS or p38 MAPK were also effective in preventing human male germ cell apoptosis induced by hormone-free culture conditions. Together, these results establish a new signal transduction pathway involving p38 MAPK and iNOS that, through activation of the intrinsic pathway signaling, promotes male germ cell death in response to a lack of hormonal stimulation across species.  相似文献   

3.
4-Hydroxynonenal (4-HNE) has been suggested to be involved in stress-induced signaling for apoptosis. In present studies, we have examined the effects of 4-HNE on the intrinsic apoptotic pathway associated with p53 in human retinal pigment epithelial (RPE and ARPE-19) cells. Our results show that 4-HNE causes induction, phosphorylation, and nuclear accumulation of p53 which is accompanied with down regulation of MDM2, activation of the pro-apoptotic p53 target genes viz. p21 and Bax, JNK, caspase3, and onset of apoptosis in treated RPE cells. Reduced expression of p53 by an efficient silencing of the p53 gene resulted in a significant resistance of these cells to 4-HNE-induced cell death. The effects of 4-HNE on the expression and functions of p53 are blocked in GSTA4-4 over expressing cells indicating that 4-HNE-induced, p53-mediated signaling for apoptosis is regulated by GSTs. Our results also show that the induction of p53 in tissues of mGsta4 (−/−) mice correlate with elevated levels of 4-HNE due to its impaired metabolism. Together, these studies suggest that 4-HNE is involved in p53-mediated signaling in in vitro cell cultures as well as in vivo that can be regulated by GSTs.  相似文献   

4.
5.
6.
Role of lipid peroxidation products, particularly 4-hydroxynonenal (4-HNE) in cell cycle signaling is becoming increasingly clear. In this article, recent studies suggesting an important role of 4-HNE in stress mediated signaling for apoptosis are critically evaluated. Evidence demonstrating the modulation of UV, oxidative stress, and chemical stress mediated apoptosis by blocking lipid peroxidation by the alpha-class glutathione S-transferases (GSTs) is presented which suggest an important role of these enzymes in protection against oxidative stress and a role of lipid peroxidation products in stress mediated signaling. Overexpression of 4-HNE metabolizing GSTs (mGSTA4-4, hGSTA4-4, or hGST5.8) protects cells against 4-HNE, oxidative stress (H(2)O(2) or xanthine/xanthine oxidase), and UV-A mediated apoptosis by blocking JNK and caspase activation suggesting a role of 4-HNE in the mechanisms of apoptosis caused by these stress factors. The intracellular concentration of 4-HNE appears to be crucial for the nature of cell cycle signaling and may be a determinant for the signaling for differentiation, proliferation, transformation, or apoptosis. The intracellular concentrations of 4-HNE are regulated through a coordinated action of GSTs (GSTA4-4 and hGST5.8) which conjugate 4-HNE to GSH to form the conjugate (GS-HNE) and the transporter 76 kDa Ral-binding GTPase activating protein (RLIP76), which catalyze ATP-dependent transport of GS-HNE. A mild stress caused by heat, UV-A, or H(2)O(2)with no apparent effect on the cells in culture causes a rapid, transient induction of hGST5.8 and RLIP76. These stress preconditioned cells acquire ability to metabolize and exclude 4-HNE at an accelerated pace and acquire relative resistance to apoptosis by UV and oxidative stress as compared to unconditioned control cells. This resistance of stress preconditioned cells can be abrogated by coating the cells with anti-RLIP76 antibodies which block the transport of GS-HNE. These studies and previous reports discussed in this article strongly suggest a key role of 4-HNE in stress mediated signaling.  相似文献   

7.
Surfactin has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in surfactin-induced apoptosis remain poorly understood. The present study was undertaken to elucidate the underlying network of signaling events in surfactin-induced apoptosis of human breast cancer MCF-7 cells. In this study, surfactin caused reactive oxygen species (ROS) generation and the surfactin-induced cell death was prevented by antioxidants N-acetylcysteine (NAC) and catalase, suggesting involvement of ROS generation in surfactin-induced cell death. Surfactin induced a sustained activation of the phosphorylation of ERK1/2 and JNK, but not p38. Moreover, surfactin-induced cell death was reversed by PD98059 (an inhibitor of ERK1/2) and SP600125 (an inhibitor of JNK), but not by SB203580 (an inhibitor of p38). However, the phosphorylation of JNK rather than ERK1/2 activation by surfactin was blocked by NAC/catalase. These results suggest that the action of surfactin on MCF-7 cells was via ERK1/2 and JNK, but not via p38, and the ERK1/2 and JNK activation induce apoptosis through two independent signaling mechanisms. Surfactin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase cascade reaction. The NAC and SP600125 blocked these events induced by surfactin. Moreover, the general caspase inhibitor z-VAD-FMK inhibited the caspase-6 activity and exerted the protective effect against the surfactin-induced cell death. Taken together, these findings suggest that the surfactin induces apoptosis through a ROS/JNK-mediated mitochondrial/caspase pathway.  相似文献   

8.
9.
The Fas (apo/CD95) receptor which belongs to the TNF-alpha family is a transmembrane protein involved in the signaling for apoptosis through the extrinsic pathway. During this study, we have examined a correlation between intracellular levels of 4-HNE and expression of Fas in human lens epithelial (HLE B-3) cells. Our results show that in HLE B-3 cells, Fas is induced by 4-HNE in a concentration- and time-dependent manner, and it is accompanied by the activation of JNK, caspase 3, and the onset of apoptosis. Fas induction and activation of JNK are also observed in various tissues of mGsta4 null mice which have elevated levels of 4-HNE. Conversely, when 4-HNE is depleted in HLE B-3 cells by a transient transfection with hGSTA4, Fas expression is suppressed. However, upon the cessation of hGSTA4 expression in these transiently transfected cells, Fas and 4-HNE return to their basal levels. Fas-deficient transformed HLE B-3 cells stably transfected with hGSTA4 show remarkable resistance to apoptosis. Also, the wild-type HLE B-3 cells in which Fas is partially depleted by siRNA acquire resistance to 4-HNE-induced apoptosis, suggesting an at least partial role of Fas in 4-HNE-induced apoptosis in HLE B-3 cells. We also demonstrate that during 4-HNE-induced apoptosis of HLE B-3 cells, Daxx is induced and it binds to Fas. Together, these results show an important role of 4-HNE in regulation of the expression and functions of Fas.  相似文献   

10.
The mammalian alpha-class glutathione S-transferase (GST) isozymes mGSTA4-4, rGSTA4-4, and hGSTA4-4 are known to utilize 4-hydroxynonenal (4HNE) as a preferred substrate. During the present studies, we have examined the effect of transfecting human myeloid HL-60 cells with mGSTA4, on 4-HNE-induced apoptosis and the associated signaling mechanisms. Results of these studies show that treatment of the wild-type or vector-only-transfected HL-60 cells with 20 microM 4-HNE caused apoptosis within 2 h. The cells transfected with mGSTA4 did not undergo apoptosis under these conditions even after 4 h. In the wild-type and vector-transfected cells, apoptosis was preceded by JNK activation and c-Jun phosphorylation within 30 min, and an increase in AP-1 binding within 2 h of treatment with 20 microM 4-HNE. In mGSTA4-transfected cells, JNK activation and c-Jun phosphorylation were observed after 1 h, and increased AP-1 binding was observed after 8 h under these conditions. In the control cells, 20 microM 4-HNE caused caspase 3 activation and poly(ADP-ribose) polymerase cleavage within 2 h, while in mGSTA4-transfected cells, a lesser degree of these effects was observed even after 8 h. Transfection with mGSTA4 also provided protection to the cells from 4-HNE and doxorubicin cytotoxicity (1.6- and 2.6-fold, respectively). These results show that 4-HNE mediates apoptosis through its effects on JNK and caspase 3, and that 4-HNE metabolizing GST isozyme(s) may be important in the regulation of this pathway of oxidative-stress-induced apoptosis.  相似文献   

11.
The role of c-Jun N terminal Kinase (JNK) has been well documented in various cellular stresses where it leads to cell death. Similarly, extracellular signal-regulated kinase (ERK) which was identified as a signalling molecule for survival pathway has been shown recently to be involved in apoptosis also. Recently we reported that ICB3E, a synthetic analogue of Piper betle leaf-derived apoptosis-inducing agent hydroxychavicol (HCH), possesses anti-chronic myeloid leukemia (CML) acitivity in vitro and in vivo without insight on mechanism of action. Here we report that ICB3E is three to four times more potent than HCH in inducing apoptosis of leukemic cells without having appreciable effects on normal human peripheral blood mononuclear cells, mouse fibroblast cell line NIH3T3 and monkey kidney epithelial cell line Vero. ICB3E causes early accumulation of mitochondria-derived reactive oxygen species (ROS) in K562 cells. Unlike HCH, ICB3E treatment caused ROS dependent activation of both JNK, ERK and induced the expression of iNOS leading to generation of nitric oxide (NO). This causes cleavage of caspase 9, 3 and PARP leading to apoptosis. Lack of cleavage of caspase 8 and inability of blocking chimera antibody to DR5 or neutralizing antibody to Fas to reverse ICB3E-mediated apoptosis suggest the involvement of only intrinsic pathway. Our data reveal a novel ROS-dependent JNK/ERK-mediated iNOS activation pathway which leads to NO mediated cell death by ICB3E.  相似文献   

12.
Abstract: Neuronally differentiated PC12 cells undergo synchronous apoptosis when deprived of nerve growth factor (NGF). Here we show that NGF withdrawal induces actinomycin D- and cycloheximide-sensitive caspase (ICE-like) activity. The peptide inhibitor of caspase activity, N -acetyl-Asp-Glu-Val-Asp-aldehyde, was more potent than acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone in preventing NGF withdrawal-induced apoptosis, suggesting an important role for caspase-3 (CPP32)-like proteases. We observed a peak of reactive oxygen species (ROS) 6 h after NGF withdrawal. ROS appear to be required for apoptosis, because cell death is prevented by the free radical spin trap, N-tert -butyl-α-phenylnitrone, and the antioxidant, N -acetylcysteine. ROS production was blocked by actinomycin D, cycloheximide, and caspase protease inhibitors, suggesting that ROS generation is downstream of new mRNA and protein synthesis and activation of caspases. Forced expression of either BCL-2 or the BCL-2-binding protein BAG-1 blocked NGF withdrawal-induced apoptosis, activation of caspases, and ROS generation, showing that they function upstream of caspases. Coexpression of BCL-2 and BAG-1 was more protective than expression of either protein alone.  相似文献   

13.
Ricin is a toxin isolated from castor beans that has potential as a weapon of bioterrorism. This glycoprotein consists of an A-chain (RTA) that damages the ribosome and inhibits protein synthesis and a B-chain that plays a role in cellular uptake. Ricin activates the c-Jun N-terminal kinase (JNK) and p38 signaling pathways; however, a role for these pathways in ricin-induced cell death has not been investigated. Our goals were to determine if RTA alone could activate apoptosis and if the JNK and p38 pathways were required for this response. Comparable caspase activation was observed with both ricin and RTA treatment in the immortalized, nontransformed epithelial cell line, MAC-T. Ribosome depurination and inhibition of protein synthesis were induced in 2–4 h with 1 μg/ml RTA and within 4–6 h with 0.1 μg/ml RTA. Apoptosis was not observed until 4 h of treatment with either RTA concentration. RTA activated JNK and p38 in a time- and concentration-dependent manner that preceded increases in apoptosis. Inhibition of the JNK pathway reduced RTA-induced caspase activation and poly(ADP-ribose) polymerase cleavage. In contrast, inhibition of the p38 pathway had little effect on RTA-induced caspase 3/7 activation. These studies are the first to demonstrate a role for the JNK signaling pathway in ricin-induced cell death. In addition, the MAC-T cell line is shown to be a sensitive in vitro model system for future studies using RTA mutants to determine relationships between RTA-induced depurination, ribotoxic stress, and apoptosis in normal epithelial cells.  相似文献   

14.
Lee SH  Park SW  Pyo CW  Yoo NK  Kim J  Choi SY 《Biochimie》2009,91(1):102-108
The cell proliferation of p53-deficient Jurkat T cells is controlled after prolonged exposure to human lactoferrin (Lf). However, the molecular mechanism by which Lf influences these cellular responses remains unclear. In this study, we demonstrate that Lf-induced apoptosis in Jurkat T cells occurs in a dose- and time-dependent manner via the regulation of c-Jun N-terminal kinase (JNK) activity. Jurkat cells exposed to Lf for 1 day, especially at concentrations in excess of 500 microg/ml, showed typical apoptosis, as indicated by decreased cell viability and increased Annexin V binding. Our results also showed that Lf induced the activation of caspase 9 and caspase 3 activation, as demonstrated by our detection of cleaved caspases and PARP. Lf-induced apoptosis did not influence Bcl-2 expression via an ERK1/2 phosphorylation pathway, but was rather associated with the level of Bcl-2 phosphorylation. The treatment of cells with the specific JNK inhibitor SP600125, but not the p38 MAPK inhibitor SB203580, revealed that the JNK-Bcl-2 signaling cascade is required for Lf-induced apoptosis. When JNK activation was abolished by SP600125, no Bcl-2 phosphorylation was detected, and the Lf-treated Jurkat cells did not undergo cell death. These findings indicate that Lf functions as a biological mediator of apoptosis in the human leukemia Jurkat T-cell line, via the JNK-associated Bcl-2 signaling pathway.  相似文献   

15.
CKD (chronic kidney disease) is a public health problem, mediated by haemodynamic and non‐haemodynamic events including oxidative stress. We investigated the effect of two GSH (glutathione) precursors, NAC (N‐acetylcysteine) and cystine as the physiological carrier of cysteine in GSH with added selenomethionine (F1) in preventing spermine (uraemic toxin)‐induced apoptosis in cultured human aortic VSMC (vascular smooth muscle cells). VSMCs exposed to spermine (15 μM) with or without antioxidants (doses 50, 100, 200 and 500 μg/ml) were assessed for apoptosis, JNK (c‐Jun‐NH2‐terminal kinase) activation and iNOS (inducible nitric oxide synthase) induction and activation of intrinsic pathway signalling. Spermine exposure resulted in activation of JNK and iNOS induction and apoptosis. NAC and F1 (dose range 50–500 μg/ml) attenuated spermine‐induced acceleration of VSMC apoptosis but only F1 (at 200 and 500 μg/ml) maintained spermine‐induced apoptosis at control levels. Spermine‐induced JNK activation was prevented by 200 μg/ml of both NAC and F1, while iNOS induction was blocked only by F1. Notably, the adverse effects of spermine on BAX/BCL‐2 ratio, cytochrome c release and caspase activation was fully attenuated by F1. In conclusion, F1 was more effective than NAC in preventing spermine‐induced apoptosis and downstream changes in related signal transduction pathways in VSMCs. Further studies are needed to examine the effect of these compounds in preventing CKD‐associated vascular disease.  相似文献   

16.
17.
The hierarchy of events accompanying induction of apoptosis by the proteasome inhibitor Bortezomib was investigated in Jurkat lymphoblastic and U937 myelomonocytic leukemia cells. Treatment of Jurkat or U937 cells with Bortezomib resulted in activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK (mitogen-activated protein kinase), inactivation of extracellular signal-regulating kinase 1/2 (ERK1/2), cytochrome c release, caspase-9, -3, and -8 activation, and apoptosis. Bortezomib-mediated cytochrome c release and caspase activation were blocked by the pharmacologic JNK inhibitor SP600125, but lethality was not diminished by the p38 MAPK inhibitor SB203580. Inducible expression of a constitutively active MEK1 construct blocked Bortezomib-mediated ERK1/2 inactivation, significantly attenuated Bortezomib lethality, and unexpectedly prevented JNK activation. Conversely, pharmacologic MEK/ERK1/2 inhibition promoted Bortezomib-mediated JNK activation and apoptosis. Lastly, the antioxidant N-acetyl-l-cysteine (LNAC) attenuated Bortezomib-mediated reactive oxygen species (ROS) generation, ERK inactivation, JNK activation, mitochondrial dysfunction, and apoptosis. In contrast, enforced MEK1 and ERK1/2 activation or JNK inhibition did not modify Bortezomib-induced ROS production. Together, these findings suggest that in human leukemia cells, Bortezomib-induced oxidative injury operates at a proximal point in the cell death cascade to antagonize cytoprotective ERK1/2 signaling, promote activation of the stress-related JNK pathway, and to trigger mitochondrial dysfunction, caspase activation, and apoptosis. They also suggest the presence of a feedback loop wherein Bortezomib-mediated ERK1/2 inactivation contributes to JNK activation, thereby amplifying the cell death process.  相似文献   

18.
The hierarchy of events accompanying induction of apoptosis by the microtubule inhibitor docetaxel was investigated in HL-60 human leukemia cells. Treatment of HL-60 cells with docetaxel resulted in the production of reactive oxygen species (ROS), activation of caspase-3 (-like) protease, c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activation, bcl-2 phosphorylation and apoptosis. Docetaxel elicited ROS production from NADPH oxidase as demonstrated by specific oxidase inhibitor diphenylene iodonium (DPI). ROS mediated the caspase-3 activation and apoptosis in HL-60 cells. The caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) effectively inhibited JNK/SAPK activation, bcl-2 phosphorylation and partially attenuated the ROS production induced by docetaxel. Docetaxel-induced bcl-2 phosphorylation was completely blocked by expression of dominant negative JNK or the JNK/SAPK inhibitor SP600125. Overexpression of bcl-2 partially prevented docetaxel-mediated ROS production and subsequent caspase-3 activation, thereby inhibiting apoptotic cell death. It is thus conferred that such sequent events as ROS production, caspase activation, JNK/SAPK activation, bcl-2 phosphorylation and the further generation of ROS should be parts of an amplification loop to increase caspase activity, thereby facilitating the apoptotic cell death process.  相似文献   

19.
20.
Caspases and c-Jun N-terminal kinase (JNK) are activated in tumor cells during induction of apoptosis. We investigated the signaling cascade and function of these enzymes in cisplatin-induced apoptosis. Treatment of Jurkat T-cells with cisplatin induced cell death with DNA fragmentation and activation of caspase and JNK. Bcl-2 overexpression suppressed activation of both enzymes, whereas p35 and CrmA inhibited only the DEVDase (caspase-3-like) activity, indicating that the activation of these enzymes may be differentially regulated. Cisplatin induced apoptosis with the cytochrome c release and caspase-3 activation in both wild-type and caspase-8-deficient JB-6 cells, while the Fas antibody induced these apoptotic events only in wild-type cells. This indicates that caspase-8 activation is required for Fas-mediated apoptosis, but not cisplatin-induced cell death. On the other hand, cisplatin induced the JNK activation in both the wild-type and JB-6 cells, and the caspase-3 inhibitor Z-DEVD-fmk did not inhibit this activation. The JNK overexpression resulted in a higher JNK activity, AP-1 DNA binding activity, and metallothionein expression than the empty vector-transfected cells following cisplatin treatment. It also partially protected the cells from cisplatin-induced apoptosis by decreasing DEVDase activity. These data suggest that the cisplatin-induced apoptotic signal is initiated by the caspase-8-independent cytochrome c release, and the JNK activation protects cells from cisplatin-induced apoptosis via the metallothionein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号