共查询到20条相似文献,搜索用时 15 毫秒
1.
Charles M. Henley Karen Wey Amy Takashima Charles Mills Elaine Granmayeh Indra Krishnappa Claudia S. Robertson 《Journal of neurochemistry》1997,69(1):259-265
Abstract: S -Adenosyl- l -methionine decarboxylase (SAMdc) and l -ornithine decarboxylase (ODC) are major enzymes regulating polyamine synthesis. Following ischemia, putrescine content increases as a result of post-traumatic activation of ODC and inhibition of SAMdc. These alterations are thought to mediate edema and cell death. The purpose of this study was to quantify SAMdc activity and edema in the brain following controlled cortical impact injury. Anesthetized adult male rats underwent a right parietal craniectomy and were subjected to cortical impact injury. Tissues were obtained from three bilateral regions: parietal cortex, motor area (CPm); parietal cortex, somatosensory area (CPs); and the pyriform cortex (CPF). SAMdc activity was determined in the postmitochondrial fraction from homogenates of fresh, unfrozen tissues by measuring the decarboxylation of S -adenosyl- l -[ carboxyl -14 C]methionine. Basal SAMdc activity was determined in unoperated rats, and regional differences were noted: Activity was lower in the CPF than in the CPm and CPs. SAMdc activity decreased to the greatest extent in the ipsilateral CPm (impact site) from 1 to 72 h following traumatic brain injury. Significant edema was found in the ipsilateral CPm 1, 8, 16, 24, and 48 h after injury. Decreased SAMdc activity impairs the conversion of putrescine to polyamines and may contribute to delayed pathological changes in the brain after traumatic injury. 相似文献
2.
Robert A. Schatz Timothy E. Wilens Otto Z. Sellinger 《Journal of neurochemistry》1981,36(5):1739-1748
Abstract: The ability of S -adenosyl- l -homocysteine (AdoHcy) to inhibit biologic transmethylation reactions in vitro has led us to explore the possibility of pharmacologically manipulating AdoHcy levels in vivo and examining the consequences of these alterations on the transmethylation of some biogenic amines. Swiss-Webster mice were injected intraperitoneally with different doses of adenosine (Ado) and d,l -homocysteine thiolactone (Hcy) and were killed at various times thereafter. S -Adenosyl- l -methionine (AdoMet) and AdoHcy concentrations were determined by using a modified isotope dilution-ion exchange chromatography-high pressure liquid chromatography technique sensitive to less than 10 pmol. Increasing doses of Ado + Hcy (50-1000 mg/kg of each) produced a dose-related increase in blood, liver, and brain AdoHcy levels. At a dose level of 200 mg/kg Ado + Hcy, AdoHcy levels were markedly elevated, with minimal concomitant perturbations of AdoMet. This elevation was maximal 40 min after giving Ado + Hcy, returning to control values within 6 h. Ado + Hcy treatment resulted in decreased activities of catechol- O -methyltransferase, histamine- N -methyltransferase, and AdoHcy hydrolase in vitro. The cerebral catabolism of intraventricularly administered [3 H]histamine (HA) was decreased in a dose-related manner by Ado + Hcy treatment as evidenced by higher amounts of nonutilized [3 H]HA in brain, concurrent decreases in [3 H]methylhistamine formation, and decreases in the transmethylation conversion index. Steady state levels of HA also showed dose-related increases after Ado + Hcy treatment. It is concluded that injections of Ado + Hcy can markedly elevate AdoHcy levels in vivo , which can, in turn, decrease the rate of transmethylation reactions. 相似文献
3.
Stephen J. Kish Frank Mastrogiacomo Mark Guttman Yoshiaki Furukawa Jan-Willem Taanman Slobodan Dozic Massimo Pandolfo Jacques Lamarche Linda DiStefano & Li-Jan Chang 《Journal of neurochemistry》1999,72(2):700-707
Abstract : Controversy exists as to the clinical importance, cause, and disease specificity of the cytochrome oxidase (CO) activity reduction observed in some patients with Alzheimer's disease (AD). Although it is assumed that the enzyme is present in normal amount in AD, no direct measurements of specific CO protein subunits have been conducted. We measured protein levels of CO subunits encoded by mitochondrial (COX I, COX II) and nuclear (COX IV, COX VIc) DNA in autopsied brain of patients with AD whom we previously reported had decreased cerebral cortical CO activity. To assess disease specificity, groups of patients with spinocerebellar ataxia type I and Friedreich's ataxia were also included. As compared with the controls, mean protein concentrations of all four CO subunits were significantly decreased (-19 to -47%) in temporal and parietal cortices in the AD group but were not significantly reduced (-12 to -17%) in occipital cortex. The magnitude of the reduction in protein levels of the CO subunits encoded by mitochondrial DNA (-42 to -47%) generally exceeded that encoded by nuclear DNA (-19 to -43%). In the spinocerebellar ataxia disorders, COX I and COX II levels were significantly decreased in cerebellar cortex (-22 to -32%) but were normal or close to normal in cerebral cortex, an area relatively unaffected by neurodegeneration. We conclude that protein levels of mitochondrial- and nuclear-encoded CO subunits are moderately reduced in degenerating but not in relatively spared brain areas in AD and that the decrease is not specific to this disorder. The simplest explanation for our findings is that CO is decreased in human brain disorders as a secondary event in brain areas having reduced neuronal activity or neuronal/synaptic elements consequent to the primary neurodegenerative process. 相似文献
4.
Decreased Ferritin Levels in Brain in Parkinson''s Disease 总被引:3,自引:2,他引:3
D. T. Dexter A. Carayon M. Vidailhet M. Ruberg F. Agid Y. Agid A. J. Lees† F. R. Wells P. Jenner C. D. Marsden† 《Journal of neurochemistry》1990,55(1):16-20
Ferritin levels were measured in postmortem brain tissue from patients dying with Parkinson's disease [treated with L-3,4-dihydroxyphenylalanine (L-DOPA)] and from control patients. Ferritin levels were decreased in the substantia nigra, caudate-putamen, globus pallidus, cerebral cortex, and cerebellum when compared with age-matched control tissues. However, in CSF from L-DOPA-treated patients and in serum from L-DOPA-treated and untreated parkinsonian patients, ferritin levels were normal. Previous studies have suggested an increased total iron content in substantia nigra of parkinsonian brain. The failure of substantia nigra ferritin formation to be stimulated by increased iron levels suggests some defect in iron handling in this critical brain region in Parkinson's disease. The reason for decreased ferritin levels throughout the parkinsonian brain is not clear but does not seem to reflect a general system deficit in ferritin. 相似文献
5.
Increased DNA Oxidation and Decreased Levels of Repair Products in
Alzheimer's Disease Ventricular CSF 总被引:7,自引:2,他引:7
Mark A. Lovell S. Prasad Gabbita William R. Markesbery 《Journal of neurochemistry》1999,72(2):771-776
Abstract : One of the leading etiologic hypotheses regarding Alzheimer's disease (AD) is the involvement of free radical-mediated oxidative stress in neuronal degeneration. Although several recent studies show an increase in levels of brain DNA oxidation in both aging and AD, there have been no studies of levels of markers of DNA oxidation in ventricular CSF. This is a study of levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), the predominant marker of oxidative DNA damage, in intact DNA and as the "free" repair product that results from repair mechanisms. Free 8-OHdG was isolated from CSF from nine AD and five age-matched control subjects using solidphase extraction columns and measured using gas chromatography/mass spectrometry with selective ion monitoring. Intact DNA was isolated from the same samples and the levels of 8-OHdG determined in the intact structures. Quantification of results was carried out using stable isotope-labeled 8-OHdG. By using this sensitive methodology, statistically significant elevations ( p < 0.05) of 8-OHdG were observed in intact DNA in AD subjects compared with age-matched control subjects. In contrast, levels of free 8-OHdG, removed via repair mechanisms, were depleted significantly in AD samples ( p < 0.05). Our results demonstrate an increase in unrepaired oxygen radical-mediated damage in AD DNA as evidenced by the increased presence of 8-OHdG in intact DNA and decreased concentrations of the free repair product. These data suggest that the brain in AD may be subject to the double insult of increased oxidative stress, as well as deficiencies in repair mechanisms responsible for removal of oxidized bases. 相似文献
6.
P. Ruggeri G. De Luca A. Crisafulli S. Macaione R. M. Di Giorgio R. Ientile 《Journal of neurochemistry》1982,39(5):1230-1234
Abstract: S -Adenosylmethionine decarboxylase from rat retina is similar to that isolated from other rat tissues with regard to kinetic parameters. pH optimum, putrescine requirement, and sensitivity to spermine. The enzymic activity increases during the first 7 days of postnatal life but decreases until the 20th day. After this period AdoMet decarboxylase activity increases, to reach the highest values at the 90th day. This behavior suggests that such enzymic activity is responsible for spermidine and spermine levels in rat retina and that a high content of retinal spermine might have a role in the photoreceptor outer segment renewal. 相似文献
7.
Transferrin and Iron in Normal, Alzheimer's Disease, and Parkinson's Disease Brain Regions 总被引:6,自引:4,他引:6
D. A. Loeffler †J. R. Connor ‡P. L. Juneau †B. S. Snyder §L. Kanaley A. J. DeMaggio H. Nguyen C. M. Brickman P. A. LeWitt 《Journal of neurochemistry》1995,65(2):710-716
Abstract: Oxidant-mediated damage is suspected to be involved in the pathogenesis of several neurodegenerative disorders. Iron promotes conversion of hydrogen peroxide to hydroxyl radical and, thus, may contribute to oxidant stress. We measured iron and its transport protein transferrin in caudate, putamen, globus pallidus, substantia nigra, and frontal cortex of subjects with Alzheimer's disease (n = 14) and Parkinson's disease (n = 14), and in younger adult (n = 8) and elderly (n = 8) normal controls. Although there were no differences between control groups with regard to concentrations of iron and transferrin, iron was significantly increased ( p < 0.05) in Alzheimer's disease globus pallidus and frontal cortex and Parkinson's disease globus pallidus, and transferrin was significantly increased in Alzheimer's disease frontal cortex, compared with elderly controls. The transferrin/iron ratio, a measure of iron mobilization capacity, was decreased in globus pallidus and caudate in both disorders. Regional transferrin and iron concentrations were generally more highly correlated (Pearson's correlation coefficient) in elderly controls than in Alzheimer's and Parkinson's disease. The altered relationship between iron and transferrin provides further evidence that a disturbance in iron metabolism may be involved in both disorders. 相似文献
8.
Increased Nuclear DNA Oxidation in the Brain in Alzheimer's Disease 总被引:13,自引:6,他引:13
S. Prasad Gabbita †Mark A. Lovell ‡§ William R. Markesbery 《Journal of neurochemistry》1998,71(5):2034-2040
Abstract: Multiple lines of evidence indicate that oxidative stress is a contributor to neuronal death in Alzheimer's disease (AD). The oxidative damage that occurs to DNA may play a role in both normal aging and neurodegenerative diseases, including AD. This is a study of the oxidative damage that occurs in nuclear DNA in the brains of AD patients and cognitively intact, prospectively evaluated, age-matched control subjects. Nuclear DNA from frontal, temporal, and parietal lobes and cerebellum was isolated from 11 control subjects and 9 AD subjects, and oxidized purine and pyrimidine bases were quantitated using gas chromatography/mass spectrometry. Stable isotope-labeled oxidized base analogues were used as internal standards to measure 5-hydroxyuracil, 5-hydroxycytosine, 8-hydroxyadenine, 4,6-diamino-5-formamidopyrimidine (Fapy-adenine), 8-hydroxyguanine, and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-guanine). Statistically significant elevations of 5-hydroxycytosine, 5-hydroxyuracil, 8-hydroxyadenine, and 8-hydroxyguanine were found in AD brain compared with control subjects ( p < 0.05). There was an increased trend in the levels of Fapy-adenine in the AD brain, and Fapy-guanine showed a trend toward higher levels in control brains compared with AD. A generally higher level of oxidative DNA damage was present in neocortical regions than cerebellum. No significant correlation was observed between the oxidized bases and neurofibrillary tangle and senile plaque counts. Our results demonstrate that nuclear DNA damage by oxygen-derived radicals is increased in AD and support the concept that the brain is under increased oxidative stress in AD. 相似文献
9.
Naoya Sato Osamu Hori Atsushi Yamaguchi Jean-Charles Lambert Marie-Christine Chartier-Harlin Philip A. Robinson re Delacourte Ann Marie Schmidt Tatsuo Furuyama Kazunori Imaizumi Masaya Tohyama Tsutomu Takagi 《Journal of neurochemistry》1999,72(6):2498-2505
Mutations in the presenilin-1 (PS-1) and presenilin-2 (PS-2) genes account for the majority of cases of early-onset familial Alzheimer's disease (AD). Alternative splicing forms of the PS-1 and PS-2 gene products have previously been reported in fibroblast and brain tissue from both familial and sporadic AD patients, as well as from normal tissues and cell lines. We demonstrate here unusual alternative splicing of the PS-2 gene that leads to the generation of mRNA lacking exon 5 in human brain tissue. This product was more frequently detected in brain tissue from sporadic AD patients (70.0%; 21 of 30) than from normal age-matched controls (17.6%; three of 17). In cultured neuroblastoma cells, this splice variant was generated in hypoxia but not under other forms of cellular stress. Hypoxia-mediated induction of this splice variant was blocked by pretreatment of neuroblastoma cells with the protein synthesis inhibitor cycloheximide or antioxidants such as N-acetylcysteine and diphenyl iodonium, suggesting that hypoxia-mediated oxidant stress might, at least in part, underlie the alternative splicing of PS-2 mRNA through de novo protein synthesis. Furthermore, the stable transfectants of this splice variant produced the N-terminal part of PS-2 protein (15 kDa) and were more susceptible to cellular stresses than control transfectants. These results suggest the possibility that altered presenilin gene products in stress conditions may also participate in the pathogenesis of AD. 相似文献
10.
4-Hydroxynonenal-Derived Advanced Lipid Peroxidation End Products Are Increased in Alzheimer's Disease 总被引:28,自引:9,他引:19
Lawrence M. Sayre Dawn A. Zelasko Peggy L. R. Harris George Perry Robert G. Salomon Mark A. Smith 《Journal of neurochemistry》1997,68(5):2092-2097
Abstract: Recent studies have demonstrated oxidative damage is one of the salient features of Alzheimer's disease (AD). In these studies, glycoxidation adduction to and direct oxidation of amino acid side chains have been demonstrated in the lesions and neurons of AD. To address whether lipid damage may also play an important pathogenic role, we raised rabbit antisera specific for the lysine-derived pyrrole adducts formed by lipid peroxidation-derived 4-hydroxynonenal (HNE). These antibodies were used in immunocytochemical evaluation of brain tissue from AD and age-matched control patients. HNE-pyrrole immunoreactivity not only was identified in about half of all neurofibrillary tangles, but was also evident in neurons lacking neurofibrillary tangles in the AD cases. In contrast, few senile plaques were labeled, and then only the dystrophic neurites were weakly stained, whereas the amyloid-β deposits were unlabeled. Age-matched controls showed only background HNE-pyrrole immunoreactivity in hippocampal or cortical neurons. In addition to providing further evidence that oxidative stress-related protein modification is a pervasive factor in AD, the known neurotoxicity of HNE suggests that lipid peroxidation may also play a role in the neuronal death in AD that underlies cognitive deficits. 相似文献
11.
Steven D. Harr Luciana Uint Richard Hollister Bradley T. Hyman Armando J. Mendez 《Journal of neurochemistry》1996,66(6):2429-2435
Abstract: Inheritance of the ε4 allele of apolipoprotein (apo) E is associated with increased risk of Alzheimer's disease (AD) and with increased β-amyloid peptide (Aβ) deposition in the cortex. Apo E is a member of a family of exchangeable apos, characterized by the presence of amphipathic α-helical segments that allow these molecules to act as surfactants on the surface of lipoprotein particles. Two members of this family, apo E and apo J, have been shown to bind soluble Aβ, and both are associated with senile plaques in the AD cortex. We now have studied the pattern of brain apo expression and found that five members of this class are present: apo A-I, A-IV, D, E, and J. By contrast, apos A-II, B, and C-II were not detectable. Immunohistochemistry revealed that, in addition to apo E and apo J, apo A-I immunostained occasional senile plaques in AD cortex. Immunoblot analysis showed no difference in the relative amounts of any of these apos in tissue homogenates of frontal lobe from AD or control patients. Comparison by APO E genotype showed no differences in the amount of apo E in brain among APO E ε3/3, ε3/4, or ε4/4 individuals; however, a significant decrease in the amount of apo J was associated with the APO E ε4 allele. No differences in apo J levels were detected in CSF samples of AD subjects. We propose that several members of the exchangeable apo family may interact with Aβ deposits in senile plaques through common amphipathic α-helical domains. Competition among these molecules for binding of Aβ or Aβ aggregates may influence the deposition of Aβ in senile plaques. 相似文献
12.
为了检测Alzheimer病(Alzheimer’s disease,AD)患者外周血中淀粉样前体蛋白(Amyloid Precursor Protein, APP)基因及早老素1(Presenilin 1, PS1)基因的表达情况,进而探讨APP及PS1基因的表达与AD的相关性,采用SYBRGreenⅠ的方法对45例AD患者、25例血管性痴呆(vascular dementia, VD)患者及60名正常对照组样本的mRNA进行绝对定量,检测得到APP基因及PS1基因在对照组中的表达水平分别为0.026±0.005 amol/μg cDNA和0.026±0.004 amol/μg cDNA;在AD患者组中的表达量分别为0.044±0.006 amol/μg cDNA和0.051±0.011 amol/μg cDNA;,在VD患者组中的表达水平分别为0.072±0.013 amol/μg cDNA和0.039±0.005 amol/μg cDNA 。经显著性检验,AD患者组APP基因的表达水平上调,t=2.639, P<0.01;PS1基因的表达水平同样呈上调趋势,t=2.173,P<0.05,差异均具有统计学意义。VD患者组APP基因的表达水平上调,t=3.028,P<0.01;PS1基因的表达水平也同样呈上调趋势,t=2.012,P<0.05,均有显著性差异。因此,APP及PS1基因的表达水平的增高并不一定与AD发生特异性关联,而可能与多种导致痴呆的脑部病变发生关联。 相似文献
13.
Frank Mastrogiacomo Catherine Bergeron Stephen J. Kish 《Journal of neurochemistry》1993,61(6):2007-2014
We measured the activity of the a-ketoglutarate dehydrogenase complex (α-KGDHC), a rate-limiting Krebs cycle enzyme, in postmortem brain samples from 38 controls and 30 neuropathologically confirmed Alzheimer's disease (AD) cases, in both the presence and absence of thiamine pyrophosphate (TPP), the enzyme's cofactor. Statistically significant correlations between brain pH and lactate levels and α-KGDHC activity in the controls were observed, suggesting an influence of agonal status on the activity of α-KGDHC. As compared with the controls, mean α-KGDHC activity, with added TPP, was significantly (p < 0.005) reduced in AD brain in frontal (-56%), temporal (-60%), and parietal (-68%) cortices, with the reductions (-25 to -53%) in the occipital cortex, hippocampus, amygdala, and caudate failing to reach statistical significance. In the absence of exogenously administered TPP, mean a-KGDHC activity was reduced to a slightly greater extent in all seven AD brain areas (-39 to -83%), with the reductions now reaching statistical significance in the four cerebral cortical areas and hippocampus. A statistically significant negative correlation was observed between α-KGDHC activity and neurofibrillary tangle count in AD parietal cortex, the brain area exhibiting the most marked reduction in enzyme activity; this suggests that the enzyme activity reduction in AD brain may be related to the disease process and severity. In each brain area examined, TPP produced a greater stimulatory effect on α-KGDHC activity in the AD group (23–280% mean stimulation) as compared with the controls (-4 to ±50%); this TPP effect could be explained by reduced endogenous TPP levels in AD brain. Reduced brain α-KGDHC activity could be consequent to loss of neurons preferentially enriched in α-KGDHC, a premortem reduction in TPP levels (which may have affected enzyme stability), elevated brain levels of the α-KGDHC inhibitor ammonia, or an actual failure in the expression of the gene encoding the enzyme. We suggest that a defect in this key Krebs cycle enzyme could contribute to an impairment of cerebral energy metabolism and the brain dysfunction in AD. 相似文献
14.
G. Christie R. E. Markwell C. W. Gray L. Smith F. Godfrey F. Mansfield H. Wadsworth R. King M. McLaughlin D. G. Cooper R. V. Ward D. R. Howlett T. Hartmann S. F. Lichtenthaler K. Beyreuther J. Underwood S. K. Gribble R. Cappai C. L. Masters A. Tamaoka R. L. Gardner A. J. Rivett E. H. Karran & D. Allsop 《Journal of neurochemistry》1999,73(1):195-204
Peptide aldehyde inhibitors of the chymotrypsin-like activity of the proteasome (CLIP) such as N-acetyl-Leu-Leu-Nle-H (or ALLN) have been shown previously to inhibit the secretion of beta-amyloid peptide (A beta) from cells. To evaluate more fully the role of the proteasome in this process, we have tested the effects on A beta formation of a much wider range of peptide-based inhibitors of CLIP than published previously. The inhibitors tested included several peptide boronates, some of which proved to be the most potent peptide-based inhibitors of beta-amyloid production reported so far. We found that the ability of the peptide aldehyde and boronate inhibitors to suppress A beta formation from cells correlated extremely well with their potency as CLIP inhibitors. Thus, we conclude that the proteasome may be involved either directly or indirectly in A beta formation. 相似文献
15.
阿尔茨海默氏病与氧应激 总被引:6,自引:0,他引:6
阿尔茨海默氏病(Alzheimer's disease,AD)是一种神经退行性疾病,是老年人群痴呆最普遍的原因,也是老年人病态和死亡的主要原因.以阿尔茨海默氏病与氧应激为题,从AD发生的分子基础和氧应激基础,以及β淀粉样蛋白(β amyloid, βA)的聚合作用和毒性与自由基的关系,对近年来在AD发生机制研究中引人注目的氧应激问题,作一简要综述. 相似文献
16.
Antonio Migheli Angelo Attanasio Maria Teresa Giordana 《Biotechnic & histochemistry》1993,68(2):117-121
A postembedding staining method is presented for ultrastructural visualization of amyloid deposits in brain sections from patients with Alzheimer's disease. Methenamine silver stain is applied to thin sections of tissue embedded in the acrylic resin LR Gold. Senile plaques are easily labeled by silver granules and the ultrastructural detail is well preserved. When staining time is prolonged, silver precipitate also is deposited on neuronal paired helical filaments. This method overcomes the drawbacks of previously reported applications of the stain on Vibra-tome and Epon sections. Thin sections from the same tissue block can be immunostained with antibodies to various plaque components, thus allowing comparative studies at the electron microscope level. 相似文献
17.
三种老年痴呆动物模型行为学比较 总被引:14,自引:0,他引:14
目的老年大鼠、基底前脑损伤大鼠及注射东莨菪碱大鼠常作为老年性痴呆的动物模型,本研究对这三种模型的行为表现进行比较研究。方法采用水迷宫及旷场分析法对这三种模型及青年对照和假手术对照进行了研究。结果老年大鼠、基底前脑损伤大鼠和注射东莨菪碱大鼠的学习记忆能力显著减弱,老年大鼠对新环境的紧张程度增强;基底前脑损伤大鼠和注射东莨菪碱大鼠的空间认知能力显著下降;注射东莨菪碱大鼠的兴奋性异常增强,(P<005)。结论基底前脑损伤动物的行为表现最符合老年痴呆患者的早期临床症状。 相似文献
18.
Balvant R. Sitaram Manjula Sitaram Martin Traut Colin B. Chapman 《Journal of neurochemistry》1995,65(4):1887-1894
Abstract: Liquid chromatographic techniques that permit the simultaneous analysis of S -adenosylmethionine, melatonin, and its intermediary metabolites N -acetyl-5-hydroxytryptamine and 5-hydroxytryptamine within individual pineal glands have been developed. S -Adenosylmethionine has been shown to undergo a marked nyctohemeral rhythm in the pineal gland of the rat, with maximal levels occurring during the light period and minimal levels during the dark period. Detailed studies of the temporal relationships between the levels of S -adenosylmethionine and those of melatonin and its intermediary metabolites suggest that an association exists between the levels of S -adenosylmethionine and the status of the biosynthesis of melatonin. Exposure of animals to continuous light and the administration of the β-adrenoreceptor antagonist propranolol were both found to inhibit the induction of melatonin synthesis and prevent the reduction in the levels of S -adenosylmethionine during the dark period. As a corollary the induction of melatonin biosynthesis following the administration of the β-adrenoreceptor agonist isoproterenol during the light period was accompanied by a marked decrease in the levels of S -adenosylmethionine in the pineal gland. The significance of the link between the nyctohemeral rhythms in the levels of S -adenosylmethionine and the biosynthesis of melatonin in the pineal gland is discussed in the context of the therapeutic efficacy of S -adenosylmethionine as an antidepressant. 相似文献
19.
阿尔茨海默病(AD)是非常普遍的神经变性性疾病并且是老年人痴呆的主要原因。AD患者的症状特点包括进行性的认知障碍、记忆丧失和行为障碍,与大脑中的病理变化密切相关。AD现成为全球最严重的健康和社会经济问题。在AD患者脑中神经纤维网或神经营养障碍的过程中存在tau蛋白的异常。tau蛋白丧失其促微管组装的生物学功能,导致细胞骨架的破坏、丝状物形成和神经缠结,轴突运输损害,进而导致突触蛋白失去功能和神经退行性病变。其数量和结构的改变将会影响其功能而且会出现异常聚集。调节Tau蛋白的异常聚集的分子机制主要是一些翻译后修饰使其结构及构象发生变化。因此,异常磷酸化和截断的tau蛋白作为tau蛋白病理过程的关键机制而引起学者关注。本文描述了tau蛋白的结构和功能及其在AD中的主要病理变化,同时在本文中还涉及到磷酸化的tau蛋白是神经元对氧化应激的代偿反应这一观点。对tau蛋白进行更加全面的解读。 相似文献
20.