首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Although experimental animal data have implicated ornithine decarboxylase, a key regulatory enzyme of polyamine biosynthesis, in brain development and function, little information is available on this enzyme in normal or abnormal human brain. We examined the influence, in autopsied human brain, of postnatal development and aging, regional distribution, and Alzheimer's disease on the activity of ornithine decarboxylase. Consistent with animal data, human brain ornithine decarboxylase activity was highest in the perinatal period, declining sharply (by ∼60%) during the first year of life to values that remained generally unchanged up to senescence. In adult brain, a moderately heterogeneous regional distribution of enzyme activity was observed, with high levels in the thalamus and occipital cortex and low levels in cerebellar cortex and putamen. In the Alzheimer's disease group, mean ornithine decarboxylase activity was significantly increased in the temporal cortex (+76%), reduced in occipital cortex (−70%), and unchanged in hippocampus and putamen. In contrast, brain enzyme activity was normal in patients with the neurodegenerative disorder spinocerebellar ataxia type I. Our demonstration of ornithine decarboxylase activity in neonatal and adult human brain suggests roles for ornithine decarboxylase in both developing and mature brain function, and we provide further evidence for the involvement of abnormal polyamine system activity in Alzheimer's disease.  相似文献   

2.
Abstract: Liquid chromatographic techniques that permit the simultaneous analysis of S -adenosylmethionine, melatonin, and its intermediary metabolites N -acetyl-5-hydroxytryptamine and 5-hydroxytryptamine within individual pineal glands have been developed. S -Adenosylmethionine has been shown to undergo a marked nyctohemeral rhythm in the pineal gland of the rat, with maximal levels occurring during the light period and minimal levels during the dark period. Detailed studies of the temporal relationships between the levels of S -adenosylmethionine and those of melatonin and its intermediary metabolites suggest that an association exists between the levels of S -adenosylmethionine and the status of the biosynthesis of melatonin. Exposure of animals to continuous light and the administration of the β-adrenoreceptor antagonist propranolol were both found to inhibit the induction of melatonin synthesis and prevent the reduction in the levels of S -adenosylmethionine during the dark period. As a corollary the induction of melatonin biosynthesis following the administration of the β-adrenoreceptor agonist isoproterenol during the light period was accompanied by a marked decrease in the levels of S -adenosylmethionine in the pineal gland. The significance of the link between the nyctohemeral rhythms in the levels of S -adenosylmethionine and the biosynthesis of melatonin in the pineal gland is discussed in the context of the therapeutic efficacy of S -adenosylmethionine as an antidepressant.  相似文献   

3.
The effects of ethylene and auxin on polyamine levels were studied in suspension-cultured cells of tobacco ( Nicotiana tabacum . L). Treatment of 4-day-cultured cells with ethylene increased the levels of spermidine and spermine. The activities of arginine decarboxylase (ADC; EC 4.1.1.19), ornithine decarboxylase (ODC: EC 4.1.1.17), and S -adenosylmethionine decarboxylase (SAMDC: EC 4.1.1.50) rapidly increased between 3 and 12 h. An auxin, indole-3-acetic acid (IAA), increased polyamine levels and activities of ADC, ODC and SAMDC. The spermine level continued to increase significantly during a 24-h incubation with IAA. The increases in polyamine accumulation induced by ethylene were partially offset by an inhibitor of ethylene action, 2,5-norbornadiene. It is suggested that the auxin-induced polyamine accumulation occurred directly, without metabolic competition between ethylene and polyamine biosynthesis, and indirectly, through auxin-induced ethylene formation.  相似文献   

4.
Sugar beet cells grown in batch suspension culture have been used to study the regulation of polyamine levels during the transition from a quiescent to a proliferating state. The quiescent state was achieved by maintenance of the phytohormone autonomous cells in the stationary phase of the batch culture cycle. After subculture into fresh medium there was an increase in DNA synthesis which was accompanied by a dramatic increase in cellular polyamine levels. The levels of both free and bound cellular putrescine and spermidine within the cells reached a peak before the onset of the first synchronous division. The levels of putrescine, spermidine and to some extent spermine in the culture medium also increased dramatically shortly after subculture. The increase in polyamines was preceded by a rapid but transient increase in omithine decarboxylase (EC 4.1.1.17) and S -adenosylmethionine decarboxylase (EC 4.1.1.50). Arginine decarboxylase (EC 4.1.1.19) and S -adenosylmethionine synthetase (EC 2.5.1.6) activity did not show the same pattern of cell division-related variation. Inhibition of S -adenosylmethionine biosynthesis with methylglyoxal bis-(guanylhydra-zone) (MGBG) reduced cell division in the suspension culture. Inhibitors of ornithine decarboxylase and arginine decarboxylase individually had little effect on cell division, but in combination led to a reduction in cell division. Addition of polyamines and their precursors to cells in the stationary phase of a batch culture cycle led to the induction of expression of a mitotic cyclin sequence ( BvcycII ).  相似文献   

5.
Sugar beet cells grown in batch suspension culture have been used to study the regulation of polyamine levels during the transition from a quiescent to a proliferating state. The quiescent state was achieved by maintenance of the phytohormone autonomous cells in the stationary phase of the batch culture cycle. After subculture into fresh medium there was an increase in DNA synthesis which was accompanied by a dramatic increase in cellular polyamine levels. The levels of both free and bound cellular putrescine and spermidine within the cells reached a peak before the onset of the first synchronous division. The levels of putrescine, spermidine and to some extent spermine in the culture medium also increased dramatically shortly after subculture. The increase in polyamines was preceded by a rapid but transient increase in omithine decarboxylase (EC 4.1.1.17) and S -adenosylmethionine decarboxylase (EC 4.1.1.50). Arginine decarboxylase (EC 4.1.1.19) and S -adenosylmethionine synthetase (EC 2.5.1.6) activity did not show the same pattern of cell division-related variation. Inhibition of S -adenosylmethionine biosynthesis with methylglyoxal bis-(guanylhydra-zone) (MGBG) reduced cell division in the suspension culture. Inhibitors of ornithine decarboxylase and arginine decarboxylase individually had little effect on cell division, but in combination led to a reduction in cell division. Addition of polyamines and their precursors to cells in the stationary phase of a batch culture cycle led to the induction of expression of a mitotic cyclin sequence ( Bvcycll ).  相似文献   

6.
Changes in polyamine biosynthesis in relation to submergence-enhanced shoot elongation were determined in shoots of Scirpus mucronatus L. Under submergence, the levels of free putrescine and the activities of arginine decarboxylase (ADC, EC 4.1.1.19) and ornithine decarboxylase (ODC, EC 4.1.1.17) increased, but the levels of free spermidine and spermine and the activity of S -adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50) decreased. The increases in free putrescine and shoot elongation in submerged shoots diminished from the base to the apex. The increase in free putrescine in submerged shoots was coincident with the increase in shoot length. The submergence-induced increases in free putrescine and shoot elongation were inhibited by both 5 μ M a -difluoromethylarginine and 5 μ M a -difluoromethylornithine, and the inhibitory effects were reversed by 50 μ M putrescine. These overall results indicate that ADC- and ODC-mediated putrescine synthesis is essential for the elongation of Scirpus shoots grown under submergence.  相似文献   

7.
Abstract— The concentrations of putrescine and the polyamines, spermidine and spermine, along with the specific activities of the enzymes involved in their biosynthesis, ornithine decarboxylase, S -adenosylmethionine decarboxylase and spermidine synthase have been measured in brain and liver of the developing Rhesus monkey from mid-gestation, through birth and neonatal life to maturity. The results suggest that it is an increased concentration of putrescine and an increased specific activity of ornithine decarboxylase which are associated with the rapid growth of fetal brain during the middle of gestation. By the end of two-thirds of gestation, both of these parameters have attained values similar to those found in mature brain. The concentration of spermidine in brain and the specific activities of S -adenosylmethionine decarboxylase and spermidine synthase are lower in fetal brain than adult brain and increase slowly after birth to reach values similar to those of the adult only after several months. These results provide additional evidence that in the mature brain spermidine serves some function other than one associated with rapid growth.
Fetal liver at mid-gestation was characterized by increased concentrations of both putrescine and spermidine and increased specific activities of the enzymes which synthesize them. By two-thirds of gestation, values similar to those found in adult liver had been attained. Liver has thus reached maturity with regard to polyamine metabolism by this time.  相似文献   

8.
9.
Adenosine is rapidly metabolized by isolated rat livers. The major products found in the perfusate were inosine and uric acid while hypoxanthine could also be detected. S-Adenosylhomocysteine was also excreted when the liver was perfused with both adenosine and L-homocysteine. A considerable portion of the added adenosine was salvaged via the adenosine kinase reaction. The specific radioactivity of the resultant AMP reached 75–80% of the added [8-14C]adenosine within 90 min. When the liver was perfused with adenosine alone, hydrolysis of S-adenosyllhomosysteine, via S-adenosylhomocysteine hydrolase, appeared to be blocked resulting in the accumulation of this compound. As the intracellular level of S-adenosylhomocysteine increased, the rates of various methyltransferase reactions were reduced, resulting in elevated levels of intracellular S-adenosylmethionine. When the liver was perfused with normal plasma levels of methionine the S-adenosylmethionine : S-adenosylhomocysteine ratio was 5.3 and the half-life of the methyl groups was 32 min. Upon further addition of adenosien the S-adenosylmethionine : S-adenosylhomocysteine ratio shifted to 1.7 and the half-life of the methyl groups to 103 min. In the presence of adenosine and L-homocysteine such inordinate amounts of S-adenosylhomocysteine accumulated in the cell that methylation reactions were completely inhibited. Although adenine has been found to be a product of the S-adenosylhomocysteine hydrolase only trace quantities of this compound were detectable in the tissue after perfusing the liver with high concentrations of adenosine for 90 min.  相似文献   

10.
Magnesium protoporphyrin IX O-methyltransferase (ChlM) catalyzes transfer of the methyl group from S-adenosylmethionine to the carboxyl group of the C13 propionate side chain of magnesium protoporphyrin IX. This reaction is the second committed step in chlorophyll biosynthesis from protoporphyrin IX. Here we report the crystal structures of ChlM from the cyanobacterium Synechocystis sp. PCC 6803 in complex with S-adenosylmethionine and S-adenosylhomocysteine at resolutions of 1.6 and 1.7 Å, respectively. The structures illustrate the molecular basis for cofactor and substrate binding and suggest that conformational changes of the two “arm” regions may modulate binding and release of substrates/products to and from the active site. Tyr-28 and His-139 were identified to play essential roles for methyl transfer reaction but are not indispensable for cofactor/substrate binding. Based on these structural and functional findings, a catalytic model is proposed.  相似文献   

11.
NAD, 1-methylnicotinamide, S-adenosylmethionine, and S-adenosylhomocysteine levels were analyzed in different clones of untransformed normal rat kidney cells and in cells transformed by different viruses. No consistent changes in the levels of these metabolites were apparent as a result of malignant transformation, and also differences in the levels of metabolites did not correlate with growth rate in the various cell lines. 3-Deazaadenosine prevented synthesis of 1-methylnicotinamide but not of NAD. The S-denosylmethionine/S-adenosylhomocysteine ratio did not change in serum-starved, growth-arrested cells although 1-methylnicotinamide synthesis increased about twofold. These results were used to consider possible physiological roles for 1-methylnicotinamide. Its intracellular levels did not correlate with growth rate and were not altered by transformation. No evidence was obtained that its synthesis is involved with maintenance of nicotinamide of S-adenosylmethionine levels. Thus the biological function for 1-methylnicotinamide remains a mystery.  相似文献   

12.
1. A number of compounds known to inhibit polyamine biosynthesis at various steps in the biosynthetic pathway were tested for their ability to inhibit growth and decrease polyamine concentrations in virally transformed mouse fibroblasts (SV-3T3 cells). 2. Virtually complete inhibition of growth was produced by the inhibitors of ornithine decarboxylase α-methylornithine and α-difluoromethylornithine and by the inhibitors of S-adenosylmethionine decarboxylase 1,1′-[(methylethanediylidene)dinitrilo]diguanidine and 1,1′-[(methylethanediylidene)dinitrilo]bis-(3-aminoguanidine). The former inhibitors decreased putrescine and spermidine contents in the cells to very low values, whereas the latter substantially increased putrescine but decreased spermidine concentrations. The inhibitory effects of all of these inhibitors on cell growth could be prevented by the addition of spermidine, suggesting that spermidine depletion is the underlying cause of their inhibition of growth. 3. α-Difluoromethylornithine, which is an irreversible inhibitor of ornithine decarboxylase, was a more potent inhibitor of growth and polyamine production (depleting spermidine almost completely and spermine significantly) than α-methylornithine, which is a competitive inhibitor. This was not the case with the inhibitors of S-adenosylmethionine decarboxylase where 1,1′-[(methylethanediylidene)dinitrilo]diguanidine, a reversible inhibitor, was more active than 1,1′-[(methylethanediylidene)dinitrilo]bis-(3-aminoguanidine), an irreversible inhibitor. It is suggested that this effect may be due to the lesser uptake and/or greater chemical reactivity of the latter compound. 4. Various nucleoside derivatives of S-adenosylhomocysteine that inhibited spermidine synthase in vitro did not have significant inhibitory action against polyamine accumulation in the cell. These compounds, which included S-adenosylhomocysteine sulphone, decarboxylated S-adenosylhomocysteine sulphone, decarboxylated S-adenosylhomocysteine sulphoxide and S-adenosyl-4-thio-butyric acid sulphone did not inhibit cell growth or polyamine content until cytotoxic concentrations were added. 5. 5′-Methylthioadenosine, 5′-isobutylthioadenosine and 5′-methylthiotubercidin, which inhibit aminopropyltransferase activity in vitro, all inhibited cell growth and decreased spermidine content. Although these compounds were most active against spermine synthase in vitro, they acted in the cell primarily to decrease spermidine content. Cell growth could not be restored to normal values by addition of spermidine, suggesting that these nucleosides have another inhibitory action towards cellular proliferation. 6. 5′-Methylthioadenosine and 5′-isobutylthioadenosine are degraded by a phosphorylase present in SV3T3 cells, yielding 5-methylthioribose-1-phosphate and 5-isobutylthioribose-1-phosphate respectively, and adenine. This degradation appears to decrease the inhibitory action towards cell growth, suggesting that the nucleosides themselves are exerting the inhibitory action. 5′-Methylthiotubercidin, which is not a substrate for the phosphorylase and is a competitive inhibitor of it, was the most active of these nucleosides in inhibiting cell growth and spermidine content. 5′-Methylthiotubercidin and α-difluoromethylornithine had additive effects on retarding cell growth, but not on cellular spermine accumulation, also suggesting that the primary growth-inhibiting action of the nucleoside was not on polyamine production. 7. These results support the concept that 5′-methylthioadenosine phosphorylase plays an important role in permitting cell growth to continue by preventing the build-up of inhibitory intracellular concentrations of 5′-methylthioadenosine.  相似文献   

13.
The possibility that dimethyl selenide production depletes liver S-adenosylmethionine was explored as a biochemical basis for selenite toxicity. Toxic doses of selenite (25 nmol/ g body weight) were found to rapidly decrease mouse liver S-adenosylmethionine and increase S-adenosylhomocysteine, indicative of an increased rate of transmethylation. However, S-adenosylmethionine levels remained depressed beyond the time when dimethyl selenide synthesis ceased, suggesting that selenite inactivated methionine adenosyltransferase. This was found to be the case in vivo by measuring the effect of graded doses of selenite on the conversion of the methionine analog, ethionine, to S-adenosylethionine. In vitro studies also indicated inactivation of this enzyme by selenite. Liver homogenates from mice injected with 25 nmol of selenite/g, as above, were found to have less than 50% of the methionine adenosyltransferase activity of saline-injected controls.  相似文献   

14.
Elevation of brain GABA levels by GABA-T inhibition is accompanied by a decrease ofS-adenosylmethionine decarboxylase activity. This is followed by an increase of ornithine decarboxylase activity and a severalfold increase of brain putrescine levels. Spermidine and spermine levels are not significantly affected under these conditions. These unexpected findings support a regulatory interaction between GABA and polyamine metabolism.  相似文献   

15.
A sensitive and rapid method for measuring simultaneously adenosine, S-adenosylhomocysteine and S-adenosylmethionine in renal tissue, and for the analysis of adenosine and S-adenosylhomocysteine concentrations in the urine is presented. Separation and quantification of the nucleosides are performed following solid-phase extraction by reversed-phase ion-pair high-performance liquid chromatography with a binary gradient system. N6-Methyladenosine is used as the internal standard. This method is characterized by an absolute recovery of over 90% of the nucleosides plus the following limits of quantification: 0.25–1.0 nmol/g wet weight for renal tissue and 0.25–0.5 μM for urine. The relative recovery (corrected for internal standard) of the three nucleosides ranges between 98.1±2.6% and 102.5±4.0% for renal tissue and urine, respectively (mean±S.D., n=3). Since the adenosine content in kidney tissue increases instantly after the onset of ischemia, a stop freezing technique is mandatory to observe the tissue levels of the nucleosides under normoxic conditions. The resulting tissue contents of adenosine, S-adenosylhomocysteine and S-adenosylmethionine in normoxic rat kidney are 5.64±2.2, 0.67±0.18 and 46.2±1.9 nmol/g wet weight, respectively (mean±S.D., n=6). Urine concentrations of adenosine and S-adenosylhomocysteine of man and rat are in the low μM range and are negatively correlated with urine flow-rate.  相似文献   

16.
Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the “reprogramming” of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.  相似文献   

17.
Periodate-oxidized adenosine has previously been shown to be a potent inhibitor in vitro of S-adenosylhomocysteine hydrolase (E.C. 3.3.1.1). This paper describes the inhibition of this enzyme in liver following injection of mice with periodate-oxidized adenosine. A maximally effective dose of 100 nmol/g of this compound causes liver S-adenosylhomocysteine to increase from 12 to 600 nmol/g within 30 min. This accumulation of S-adenosylhomocysteine provides an estimate of the rates of transmethylation, as well as adenosine and homocysteine production, as being at least 20 nmol/min/g liver. A doubling of S-adenosylmethionine in the liver of mice treated with periodate-oxidized adenosine suggests that the high levels of S-adenosylhomocysteine inhibit some transmethylation reactions.  相似文献   

18.
19.
Abstract— The mechanism of histamine methyltransferase (HMT) inhibition by S -adenosylhomocysteine (SAH) has been investigated on a partially purified enzyme from guinea-pig brain. The kinetic data indicated that this inhibition was competitive with respect to S -adenosylmethionine (SAMe) and noncompetitive with respect to histamine. The K t, values (about 5 ± 10−6 M in both cases) indicated that SAH had a higher affinity than SAHe or histamine for the enzyme.
In rats, after administration of a small dose of SAH, methylation of intracisternally injected [3H]histamine was not modified.
However, treatment with l -DOPA or pyrogallol induced a decrease in [3H]histamine methylation, presumably due to a modification in the SAMe/SAH ratio in the brain. Hence, histamine methylation in brain could be regulated according to the value of this ratio and thus related to methylation of other biogenic amines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号