首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The methods of measuring the base-combining capacities of proteins have been considered, and the constants and corrections that are employed in their calculation have been critically examined. 2. The base-combining capacities of ten casein preparations have been determined. These differed from each other to a far greater extent than can be attributed to the experimental errors involved in their measurement and calculation. The variations were, moreover, systematic in manner, and can be explained as dependent upon the method employed in the preparation of the casein. 3. Casein that had never been exposed to greater alkalinities than those in which it exists in nature combined with approximately 0.0014 mols of sodium hydroxide per gm., while casein prepared nach Hammarsten, and casein that was saturated with base during its preparation, combined with approximately 0.0018 mols of sodium hydroxide per gm. 4. 1 mol of sodium hydroxide, therefore, combined with 735 gm. of casein that had not previously been exposed to alkaline reactions, or with 535 gm. of casein that had previously been saturated with base. 5. If the minimal molecular weight of casein, based upon its tryptophane content, is placed at 12,800, the native protein must, therefore, contain approximately eighteen acid groups, and in addition six acid groups that are released in alkaline solutions, and presumably represent internally bound groups. The total base-combining capacity therefore represents that of a substance with a molecular weight of 12,800 and containing twenty-four acid valences. 6. This base-combining capacity is no greater than can be accounted for on the basis of our knowledge of the structure and composition of casein. On the basis of a molecular weight of 12,800 casein contains at least 19 molecules of glutamic acid, 4 of aspartic, and 8 of hydroxyglutamic acid. If the amino acids in the protein molecule are bound to each other in polypeptide linkage, each of these thirty-one dicarboxylic acids should yield terminal groups. The ammonia in casein suggests that twelve of these groups are bound as amides. As many as nineteen carboxyl groups may, therefore, be free in the protein molecule. 7. Casein contains phosphorus. If this phosphorus represents phosphoric acid, and if we consider that all of the valences of this acid are either themselves free, or that they have liberated carboxyl groups by entering into the structure of the protein molecule, casein should contain nine additional acid groups. 8. Recent analytical results, therefore, indicate that casein contains at least nineteen, and possibly twenty-eight, free acid groups. The physicochemical measurements presented suggest that casein combines with base as though it contained twenty-four acid groups, of which six, or one-fourth, appear to be bound in the native protein. These experimental results are therefore in close agreement with the expectation on the basis of the classical theory of protein structure.  相似文献   

2.
1. The deposition of casein on a platinum anode which takes place on the passage of a direct current through solutions of alkali caseinates was quantitatively studied, and it was found that: (a) the amount of casein which is deposited is directly proportional to the current, i.e. it obeys Faraday''s law; (b) the amount of casein deposited is inversely proportional (within the limits studied) to the amount of alkali which is combined with the casein. 2. A method of determining the transport numbers of proteins insoluble at their isoelectric point has been developed. 3. A titration method for determining the amount of alkali in a casein solution is given. 4. Data from the results of transference experiments on sodium caseinate, potassium caseinate, cesium caseinate, and rubidium caseinate solutions are given. It is shown that the data are best explained on the assumption that in these solutions the carriers of the current are alkali metal cations and casein anions. 5. On the basis of our transference results an explanation is given of the results which were obtained by Robertson and by Haas in their migration experiments.  相似文献   

3.
1. The results of conductivity experiments with alkali caseinate solutions are given and a graphical method of extrapolation, which gives a straight line, is described. The results of the conductivity experiments are shown to be in accord with the results of the previous transference experiments. 2. The change of conductivity of the alkali caseinate solutions with temperature is shown to follow a straight line relationship. 3. The high value of the mobility which was obtained for the casein ion and the high temperature gradient are discussed in relation to McBain''s theory of colloidal electrolytes.  相似文献   

4.
The properties of the paracasein and casein preparations studied are compared in Table VI. See PDF for Structure I. Casein retains its characteristic solubility in NaOH: (1) after being exposed to a high degree of alkalinity during its preparation, (2) when recovered from partially hydrolyzed solutions in NaOH, and (3) after being kept for a prolonged time at the isoelectric point at 5°C. II. It follows from I, that: (1) paracasein is not identical to casein modified by an excess of alkali, and that (2) this protein was not produced from casein by a partial hydrolysis of the latter in presence of NaOH.  相似文献   

5.
1. The investigations dealing with the properties of casein as an acid were reviewed. 2. The solubility of uncombined casein in water was measured at 5°C. and found to be 0.70±0.1 mg. of N per 100 gm. of water. 3. Robertson''s solubility measurements of casein in bases at various temperatures were recalculated and found to agree well with more recent measurements. 4. By combining the observations of several investigators, as well as the author''s measurements of the solubility of casein, in base, at various temperatures, the following conclusions were reached: (a) The solubility of casein in base is affected by the temperature in a discontinuous manner. (b) There exist two ranges of temperature, one, extending from about 21° to 37°C. and the other from about 60° to 85°C. where the solubility of casein in base is practically independent of temperature. (c) From 37° to 60° the equivalent combining weight of casein rises from the value 2100 to about 3700 gm. 5. By comparing the values of base bound by 1 gm. of casein at the two temperature ranges with a constant, the value of base necessary to saturate the same amount of casein, it was found that the latter value is a common multiple of the former values, indicating the stoichiometric nature of the effect of temperature.  相似文献   

6.
1. Colloids have been divided into two groups according to the ease with which their solutions or suspensions are precipitated by electrolytes. One group (hydrophilic colloids), e.g., solutions of gelatin or crystalline egg albumin in water, requires high concentrations of electrolytes for this purpose, while the other group (hydrophobic colloids) requires low concentrations. In the latter group the precipitating ion of the salt has the opposite sign of charge as the colloidal particle (Hardy''s rule), while no such relation exists in the precipitation of colloids of the first group. 2. The influence of electrolytes on the solubility of solid Na caseinate, which belongs to the first group (hydrophilic colloids), and of solid casein chloride which belongs to the second group (hydrophobic colloids), was investigated and it was found that the forces determining the solution are entirely different in the two cases. The forces which cause the hydrophobic casein chloride to go into solution are forces regulated by the Donnan equilibrium; namely, the swelling of particles. As soon as the swelling of a solid particle of casein chloride exceeds a certain limit it is dissolved. The forces which cause the hydrophilic Na caseinate to go into solution are of a different character and may be those of residual valency. Swelling plays no rôle in this case, and the solubility of Na caseinate is not regulated by the Donnan equilibrium. 3. The stability of solutions of casein chloride (requiring low concentrations of electrolytes for precipitation) is due, first, to the osmotic pressure generated through the Donnan equilibrium between the casein ions tending to form an aggregate, whereby the protein ions of the nascent micellum are forced apart again; and second, to the potential difference between the surface of a micellum and the surrounding solution (also regulated by the Donnan equilibrium) which prevents the further coalescence of micella already formed. This latter consequence of the Donnan effect had already been suggested by J. A. Wilson. 4. The precipitation of this group of hydrophobic colloids by salts is due to the diminution or annihilation of the osmotic pressure and the P.D. just discussed. Since low concentrations of electrolytes suffice for the depression of the swelling and P.D. of the micella, it is clear why low concentrations of electrolytes suffice for the precipitation of hydrophobic colloids, such as casein chloride. 5. This also explains why only that ion of the precipitating salt is active in the precipitation of hydrophobic colloids which has the opposite sign of charge as the colloidal ion, since this is always the case in the Donnan effect. Hardy''s rule is, therefore, at least in the precipitation of casein chloride, only a consequence of the Donnan effect. 6. For the salting out of hydrophilic colloids, like gelatin, from watery solution, sulfates are more efficient than chlorides regardless of the pH of the gelatin solution. Solution experiments lead to the result that while CaCl2 or NaCl increase the solubility of isoelectric gelatin in water, and the more, the higher the concentration of the salt, Na2SO4 increases the solubility of isoelectric gelatin in low concentrations, but when the concentration of Na2SO4 exceeds M/32 it diminishes the solubility of isoelectric gelatin the more, the higher the concentration. The reason for this difference in the action of the two salts is not yet clear. 7. There is neither any necessity nor any room for the assumption that the precipitation of proteins is due to the adsorption of the ions of the precipitating salt by the colloid.  相似文献   

7.
1. Data from the results of transference experiments on solutions of the alkaline earth caseinates are given. 2. The data support the idea that part of the alkaline earth element is held by the casein in the form of complex ions. 3. Grounds are given for believing that the complex anions have a definite composition.  相似文献   

8.
1. The solubility in water of purified, uncombined casein has previously been reported to be 0.11 gm. in 1 liter at 25°C. This solubility represents the sum of the concentrations of the casein molecule and of the soluble ions into which it dissociates. 2. The solubility of casein has now been studied in systems containing the protein and varying amounts of sodium hydroxide. It was found that casein forms a well defined soluble disodium compound, and that solubility was completely determined by (a) the solubility of the casein molecule, and (b) the concentration of the disodium casein compound. 3. In our experiments each mol of sodium hydroxide combined with approximately 2,100 gm. of casein. 4. The equivalent combining weight of casein for this base is just half the minimal molecular weight as calculated from the sulfur and phosphorus content, and one-sixth the minimal molecular weight calculated from the tryptophane content of casein. 5. From the study of systems containing the protein and very small amounts of sodium hydroxide it was possible to determine the solubility of the casein molecule, and also the degree to which it dissociated as a divalent acid and combined with base. 6. Solubility in such systems increased in direct proportion to the amount of sodium hydroxide they contained. 7. The concentration of the soluble casein compound varied inversely as the square of the hydrogen ion concentration, directly as the solubility of the casein molecule, Su, and as the constants Ka1 and Ka2 defining its acid dissociation. 8. The product of the solubility of the casein molecule and its acid dissociation constants yields the solubility product constant, Su·Ka1·Ka2 = 2.2 x 10–12 gm. casein per liter at 25°C. 9. The solubility of the casein molecule has been estimated from this constant, and also from the relation between the solubility of the casein and the sodium hydroxide concentration, to be approximately 0.09 gm. per liter at 25°C. 10. The product of the acid dissociation constants, Ka1 and Ka2, must therefore be 24 x 10–12N. 11. It is believed that these constants completely characterize the solubility of casein in systems containing the protein and small amounts of sodium hydroxide.  相似文献   

9.
1. The preparation and purification of paracasein was described and certain criteria for the absence of free enzyme provided for. 2. The solubility of purified paracasein in water at low temperature was studied, and found practically identical with the solubility of casein. 3. The capacity of paracasein to bind base was investigated by means of its solubility in NaOH at 5° and at 23° ± 2°C., and found to be distinctly different from that of casein. 4. At these two temperature levels paracasein had a 1.5 greater capacity to bind base than casein. The equivalent combining weights of paracasein and casein were found to stand each to the other, apapproximately, as 2 to 3. 5. This relationship suggested that the temperature coefficients of the solubility of paracasein and casein in NaOH are identical. 6. This evidence indicates that paracasein is a modification of casein, distinguishable by physicochemical means.  相似文献   

10.
The influence of temperature on the titration curve of casein may be accounted for by the Bjerrum theory of ionization of ampholytes.  相似文献   

11.
1. A review of the applicability of Schütz''s Law to enzymic reactions is given. 2. The theoretical deductions of the Law, (a) on the basis of the law of mass action, (b) on the basis of the adsorption theory, are given and the significance of the assumptions made in these deductions pointed out. 3. It is shown that the true critical increment for an enzymic reaction is equal to twice the critical increment calculated from the Schütz constant ks, if the heat of decomposition of the enzyme-products complex be neglected. 4. Experiments are described on the tryptic hydrolysis of casein at 30°C. and 404C. The foregoing considerations are applied to the experimental results obtained.  相似文献   

12.
The experiments on casein solutions therefore confirm the conclusion at which we arrived from the behavior of gelatin and crystalline egg albumin that the forces determining the combination between proteins and acids or alkalies are the same forces of primary valency which also determine the reaction between acids and alkalies with crystalloids, and that the valency and not the nature of the ion in combination with a protein determines the effect on the physical properties of the protein.  相似文献   

13.
1. Viscosity and pH curves of casein dissolved in NaOH, KOH, LiOH, and NH4OH are shown and it is found that a maximum viscosity occurs at about the same pH point with each alkali; i.e., 9.1 to 9.25. The magnitude of the viscosity is largest in ammonia solutions. 2. The maximum viscosity occurs in 8 to 10 per cent solutions of casein in alkalies when about 98 x 10–5 gram equivalents of base are combined with 1 gram of casein. 3. A maximum viscosity occurs in the same region (pH 9.1 to 9.25) when casein is dissolved in Na2CO3, Na3AsO4, Na2SO3, NaF, and Na2PO3. 4. The maximum viscosity obtained with borax solutions of casein occurs at 8.15 to 8.2 pH. It is suggested that casein acts like mannitol, glycerol, etc., in increasing the dissociation of boric acid. 5. The flattening of the viscosity curves of casein solutions, following the decline from maximum, is shown to be due to alkaline hydrolysis whence casein no longer exists as such but is cleaved into a major protein containing no phosphorus or sulfur and less nitrogen. This cleavage commences at pH 10.0 to 10.5. 6. When casein is prepared from solutions that have been subjected to high temperatures (60°C. and above) or has otherwise been heated during its preparation, it yields solutions in alkalies of high viscosity.  相似文献   

14.
1. It has been shown by titration experiments that the globulin edestin behaves like an amphoteric electrolyte, reacting stoichiometrically with acids and bases. 2. The potential difference developed between a solution of edestin chloride or acetate separated by a collodion membrane from an acid solution free from protein was found to be influenced by salt concentration and hydrogen ion concentration in the way predicted by Donnan''s theory of membrane equilibrium. 3. The osmotic pressure of such edestin-acid salt solutions was found to be influenced by salt concentration and by hydrogen ion concentration in the same way as is the potential difference. 4. The colloidal behavior of edestin is thus completely analogous to that observed by Loeb with gelatin, casein, and egg albumin, and may be explained by Loeb''s theory of colloidal behavior, which is based on the idea that proteins react stoichiometrically as amphoteric electrolytes and on Donnan''s theory of membrane equilibrium.  相似文献   

15.
Synthesis of lactoferrin and casein by the bovine mammary gland was determined in an experimental model where lactation was maintained in one mammary half, while involution was induced in the contralateral half. Culture of explants with prolactin had no consistent effect on synthesis of casein or lactoferrin in tissue from either mammary half. Endotoxin and tumor necrosis factor-α generally decreased synthesis of casein and lactoferrin, suggesting that these inflammatory mediators are not directly responsible for increasing lactoferrin synthesis during mammary inflammation or involution. Synthesis of lactoferrin was increased and casein decreased in the involuting mammary half vs. the lactating half. These results suggest that local factors in the mammary gland play a role in the regulation of lactoferrin synthesis during involution.  相似文献   

16.
1. The globulin prepared from ox serum by dilution and precipitation with carbon dioxide has been found, by electrometric titration experiments, to behave like an amphoteric electrolyte, reacting stoichiometrically with acids and bases. 2. The potential difference developed between a solution of globulin chloride, phosphate, or acetate and a solution of the corresponding acid, free from protein, separated from the globulin by a collodion membrane, was found to be influenced by hydrogen ion concentration and salt concentration in the way predicted by Donnan''s theory of membrane equilibrium. In experiments with sodium globulinate and sodium hydroxide it was found that the potential difference could be similarly explained. 3. The osmotic pressure of such solutions could be qualitatively accounted for by the Donnan theory, but exhibited a discrepancy which is explicable by analogy with certain experiments of Loeb on gelatin. 4. The application of Loeb''s theory of colloidal behavior, which had previously been found to hold in the case of gelatin, casein, egg albumin, and edestin, has thus been extended to another protein, serum globulin.  相似文献   

17.
1. The rate of hydrolysis of a casein solution by trypsin is not affected by the addition of gelatin. The trypsin, therefore, is not combined with the gelatin unless there is a separate enzyme for casein and for gelatin. 2. The presence of casein protects the gelatin-splitting power of trypsin from heat inactivation, and the presence of gelatin protects the casein-splitting power from heat inactivation. 3. It does not seem possible to account for both the above results by the assumption of an intermediate compound between enzyme and substrate, since, in order to account for the first result, a different enzyme must be assumed for each protein, while, to account for the second result, it must be assumed that the same enzyme attacks both.  相似文献   

18.
1. This paper gives measurements of the influence of various electrolytes on the cataphoretic P.D. of particles of collodion coated with gelatin, of particles of casein, and of particles of boiled egg albumin in water at different pH. The influence of the same electrolyte was about the same in all three proteins. 2. It was found that the salts can be divided into two groups according to their effect on the P.D. at the isoelectric point. The salts of the first group including salts of the type of NaCl, CaCl2, and Na2SO4 affect the P.D. of proteins at the isoelectric point but little; the second group includes salts with a trivalent or tetravalent ion such as LaCl3 or Na4Fe(CN)6. These latter salts produce a high P.D. on the isoelectric particles, LaCl3 making them positively and Na4Fe(CN)6 making them negatively charged. This difference in the action of the two groups of salts agrees with the observations on the effect of the same salts on the anomalous osmosis through collodion membranes coated with gelatin. 3. At pH 4.0 the three proteins have a positive cataphoretic charge which is increased by LaCl3 but not by NaCl or CaCl2, and which is reversed by Na4Fe(CN)6, the latter salt making the cataphoretic charge of the particles strongly negative. 4. At pH 5.8 the protein particles have a negative cataphoretic charge which is strongly increased by Na4Fe(CN)6 but practically not at all by Na2SO4 or NaCl, and which is reversed by LaCl3. the latter salt making the cataphoretic charge of the particles strongly positive. 5. The fact that electrolytes affect the cataphoretic P.D. of protein particles in the same way, no matter whether the protein is denatured egg albumin or a genuine protein like gelatin, furnishes proof that the solutions of genuine proteins such as crystalline egg albumin or gelatin are not diaphasic systems, since we shall show in a subsequent paper that proteins insoluble in water, e.g. denatured egg albumin, are precipitated when the cataphoretic P.D. falls below a certain critical value, while water-soluble proteins, e.g. genuine crystalline egg albumin or gelatin, stay in solution even if the P.D. of the particles falls below the critical P.D.  相似文献   

19.
—Male Wistar rats aged 24 days were divided into three groups. Two groups were given a high protein (250 g/kg casein) and a low protein (30 g/kg casein) diet respectively. The third group was given an amount of the high protein diet containing the same amount of energy as that consumed by the low protein diet rats. The plasma of the animals on low protein contained 20% of the concentration of tryptophan of animals on the other two diets. In these animals the concentration of tryptophan was reduced in the forebrain, cerebellum and brain stem, and the concentrations of 5-HT and 5-hydroxyindoleacetic acid were reduced in the forebrain and brain stem. The low protein diet decreased the total uptake of l -[G-3H]tryptophan into the brain and its incorporation into brain protein. Plasma insulin concentrations were reduced in the low protein and ‘restricted high protein’ animals and the plasma corticosterone concentration was raised in the low protein animals. Exogenous insulin did not raise the plasma tryptophan concentration in the low protein animals but it increased the uptake of l -[G-3H]tryptophan into the brain and its incorporation into protein. Rehabilitation for 7 days restored the plasma and brain tryptophan concentrations and those of brain 5-HT and 5-hydroxyindoleacetic acid to control values.  相似文献   

20.
1. It had been noticed in the previous experiments on the influence of the hydrogen ion concentration on the P.D. between protein solutions inside a collodion bag and aqueous solutions free from protein that the agreement between the observed values and the values calculated on the basis of Donnan''s theory was not satisfactory near the isoelectric point of the protein solution. It was suspected that this was due to the uncertainty in the measurements of the pH of the outside aqueous solution near the isoelectric point. This turned out to be correct, since it is shown in this paper that the discrepancy disappears when both the inside and outside solutions contain a buffer salt. 2. This removes the last discrepancy between the observed P.D. and the P. D. calculated on the basis of Donnan''s theory of P.D. between membrane equilibria, so that we can state that the P.D. between protein solutions inside collodion bags and outside aqueous solutions free from protein can be calculated from differences in the hydrogen ion concentration on the opposite sides of the membrane, in agreement with Donnan''s formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号