首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. It had been noticed in the previous experiments on the influence of the hydrogen ion concentration on the P.D. between protein solutions inside a collodion bag and aqueous solutions free from protein that the agreement between the observed values and the values calculated on the basis of Donnan''s theory was not satisfactory near the isoelectric point of the protein solution. It was suspected that this was due to the uncertainty in the measurements of the pH of the outside aqueous solution near the isoelectric point. This turned out to be correct, since it is shown in this paper that the discrepancy disappears when both the inside and outside solutions contain a buffer salt. 2. This removes the last discrepancy between the observed P.D. and the P. D. calculated on the basis of Donnan''s theory of P.D. between membrane equilibria, so that we can state that the P.D. between protein solutions inside collodion bags and outside aqueous solutions free from protein can be calculated from differences in the hydrogen ion concentration on the opposite sides of the membrane, in agreement with Donnan''s formula.  相似文献   

2.
1. It is shown that a neutral salt depresses the potential difference which exists at the point of equilibrium between a gelatin chloride solution contained in a collodion bag and an outside aqueous solution (without gelatin). The depressing effect of a neutral salt on the P.D. is similar to the depression of the osmotic pressure of the gelatin chloride solution by the same salt. 2. It is shown that this depression of the P.D. by the salt can be calculated with a fair degree of accuracy on the basis of Nernst''s logarithmic formula on the assumption that the P.D. which exists at the point of equilibrium is due to the difference of the hydrogen ion concentration on the opposite sides of the membrane. 3. Since this difference of hydrogen ion concentration on both sides of the membrane is due to Donnan''s membrane equilibrium this latter equilibrium must be the cause of the P.D. 4. A definite P.D. exists also between a solid block of gelatin chloride and the surrounding aqueous solution at the point of equilibrium and this P.D. is depressed in a similar way as the swelling of the gelatin chloride by the addition of neutral salts. It is shown that the P.D. can be calculated from the difference in the hydrogen ion concentration inside and outside the block of gelatin at equilibrium. 5. The influence of the hydrogen ion concentration on the P.D. of a gelatin chloride solution is similar to that of the hydrogen ion concentration on the osmotic pressure, swelling, and viscosity of gelatin solutions, and the same is true for the influence of the valency of the anion with which the gelatin is in combination. It is shown that in all these cases the P.D. which exists at equilibrium can be calculated with a fair degree of accuracy from the difference of the pH inside and outside the gelatin solution on the basis of Nernst''s logarithmic formula by assuming that the difference in the concentration of hydrogen ions on both sides of the membrane determines the P.D. 6. The P.D. which exists at the boundary of a gelatin chloride solution and water at the point of equilibrium can also be calculated with a fair degree of accuracy by Nernst''s logarithmic formula from the value pCl outside minus pCl inside. This proves that the equation x2 = y ( y + z) is the correct expression for the Donnan membrane equilibrium when solutions of protein-acid salts with monovalent anion are separated by a collodion membrane from water. In this equation x is the concentration of the H ion (and the monovalent anion) in the water, y the concentration of the H ion and the monovalent anion of the free acid in the gelatin solution, and z the concentration of the anion in combination with the protein. 7. The similarity between the variation of P.D. and the variation of the osmotic pressure, swelling, and viscosity of gelatin, and the fact that the Donnan equilibrium determines the variation in P.D. raise the question whether or not the variations of the osmotic pressure, swelling, and viscosity are also determined by the Donnan equilibrium.  相似文献   

3.
1. This paper gives measurements of the influence of various electrolytes on the cataphoretic P.D. of particles of collodion coated with gelatin, of particles of casein, and of particles of boiled egg albumin in water at different pH. The influence of the same electrolyte was about the same in all three proteins. 2. It was found that the salts can be divided into two groups according to their effect on the P.D. at the isoelectric point. The salts of the first group including salts of the type of NaCl, CaCl2, and Na2SO4 affect the P.D. of proteins at the isoelectric point but little; the second group includes salts with a trivalent or tetravalent ion such as LaCl3 or Na4Fe(CN)6. These latter salts produce a high P.D. on the isoelectric particles, LaCl3 making them positively and Na4Fe(CN)6 making them negatively charged. This difference in the action of the two groups of salts agrees with the observations on the effect of the same salts on the anomalous osmosis through collodion membranes coated with gelatin. 3. At pH 4.0 the three proteins have a positive cataphoretic charge which is increased by LaCl3 but not by NaCl or CaCl2, and which is reversed by Na4Fe(CN)6, the latter salt making the cataphoretic charge of the particles strongly negative. 4. At pH 5.8 the protein particles have a negative cataphoretic charge which is strongly increased by Na4Fe(CN)6 but practically not at all by Na2SO4 or NaCl, and which is reversed by LaCl3. the latter salt making the cataphoretic charge of the particles strongly positive. 5. The fact that electrolytes affect the cataphoretic P.D. of protein particles in the same way, no matter whether the protein is denatured egg albumin or a genuine protein like gelatin, furnishes proof that the solutions of genuine proteins such as crystalline egg albumin or gelatin are not diaphasic systems, since we shall show in a subsequent paper that proteins insoluble in water, e.g. denatured egg albumin, are precipitated when the cataphoretic P.D. falls below a certain critical value, while water-soluble proteins, e.g. genuine crystalline egg albumin or gelatin, stay in solution even if the P.D. of the particles falls below the critical P.D.  相似文献   

4.
1. It is well known that neutral salts depress the osmotic pressure, swelling, and viscosity of protein-acid salts. Measurements of the P.D. between gelatin chloride solutions contained in a collodion bag and an outside aqueous solution show that the salt depresses the P.D. in the same proportion as it depresses the osmotic pressure of the gelatin chloride solution. 2. Measurements of the hydrogen ion concentration inside the gelatin chloride solution and in the outside aqueous solution show that the difference in pH of the two solutions allows us to calculate the P.D. quantitatively on the basis of the Nernst formula See PDF for Equation if we assume that the P.D. is due to a difference in the hydrogen ion concentration on the two sides of the membrane. 3. This difference in pH inside minus pH outside solution seems to be the consequence of the Donnan membrane equilibrium, which only supposes that one of the ions in solution cannot diffuse through the membrane. It is immaterial for this equilibrium whether the non-diffusible ion is a crystalloid or a colloid. 4. When acid is added to isoelectric gelatin the osmotic pressure rises at first with increasing hydrogen ion concentration, reaches a maximum at pH 3.5, and then falls again with further fall of the pH. It is shown that the P.D. of the gelatin chloride solution shows the same variation with the pH (except that it reaches its maximum at pH of about 3.9) and that the P.D. can be calculated from the difference of pH inside minus pH outside on the basis of Nernst''s formula. 5. It was found in preceding papers that the osmotic pressure of gelatin sulfate solutions is only about one-half of that of gelatin chloride or gelatin phosphate solutions of the same pH and the same concentration of originally isoelectric gelatin; and that the osmotic pressure of gelatin oxalate solutions is almost but not quite the same as that of the gelatin chloride solutions of the same pH and concentration of originally isoelectric gelatin. It was found that the curves for the values for P.D. of these four gelatin salts are parallel to the curves of their osmotic pressure and that the values for pH inside minus pH outside multiplied by 58 give approximately the millivolts of these P.D. In this preliminary note only the influence of the concentration of the hydrogen ions on the P.D. has been taken into consideration. In the fuller paper, which is to follow, the possible influence of the concentration of the anions on this quantity will have to be discussed.  相似文献   

5.
Electromotive force measurements of cells without liquid junction, of the type Ag, AgCl, HCl + protein, H2, have been made at 30°C. with the proteins gelatin, edestin, and casein in 0.1 M hydrochloric acid. The data are consistent with the assumptions of a constant combining capacity of each protein for hydrogen ion, no combination with chloride ion, and Failey''s principle of a linear variation of the logarithm of the mean activity coefficient of the acid with increasing protein concentration. The combining capacities for hydrogen ion so obtained are 13.4 x 10–4 for edestin, 9.6 x 10–4 for gelatin, and 8.0 x 10–4 for casein, in equivalents of combined H+ per gm. of protein.  相似文献   

6.
1. Experiments on anomalous osmosis suggested that salts with trivalent cations, e.g. LaCl3, caused isoelectric gelatin to be positively charged, and salts with tetravalent anions, e.g. Na4Fe(CN)6, caused isoelectric gelatin to be negatively charged. In this paper direct measurements of the P.D. between gels of isoelectric gelatin and an aqueous solution as well as between solutions of isoelectric gelatin in a collodion bag and an aqueous solution are published which show that this suggestion was correct. 2. Experiments on anomalous osmosis suggested that salts like MgCl2, CaCl2, NaCl, LiCl, or Na2SO4 produce no charge on isoelectric gelatin and it is shown in this paper that direct measurements of the P.D. support this suggestion. 3. The question arose as to the nature of the mechanism by which trivalent and tetravalent ions cause the charge of isoelectric proteins. It is shown that salts with such ions act on isoelectric gelatin in a way similar to that in which acids or alkalies act, inasmuch as in low concentrations the positive charge of isoelectric gelatin increases with the concentration of the LaCl3 solution until a maximum is reached at a concentration of LaCl3 of about M/8,000; from then on a further increase in the concentration of LaCl3 diminishes the charge again. It is shown that the same is true for the action of Na4Fe(CN)6. From this it is inferred that the charge of the isoelectric gelatin under the influence of LaCl3 and Na4Fe(CN)6 at the isoelectric point is due to an ionization of the isoelectric protein by the trivalent or tetravalent ions. 4. This ionization might be due to a change of the pH of the solution, but experiments are reported which show that in addition to this influence on pH, LaCl3 causes an ionization of the protein in some other way, possibly by the formation of a complex cation, gelatin-La. Na4Fe(CN)6 might probably cause the formation of a complex anion of the type gelatin-Fe(CN)6. Isoelectric gelatin seems not to form such compounds with Ca, Na, Cl, or SO4. 5. Solutions of LaCl3 and Na4Fe(CN)6 influence the osmotic pressure of solutions of isoelectric gelatin in a similar way as they influence the P.D., inasmuch as in lower concentrations they raise the osmotic pressure of the gelatin solution until a maximum is reached at a concentration of about M/2,048 LaCl3 and M/4,096 Na4Fe(CN)6. A further increase of the concentration of the salt depresses the osmotic pressure again. NaCl, LiCl, MgCl2, CaCl2, and Na2SO4 do not act in this way. 6. Solutions of LaCl3 have only a depressing effect on the P.D. and osmotic pressure of gelatin chloride solutions of pH 3.0 and this depressing effect is quantitatively identical with that of solutions of CaCl2 and NaCl of the same concentration of Cl.  相似文献   

7.
1. Cooper''s gelatin purified according to Northrop and Kunitz exhibited a minimum of osmotic pressure and a maximum of opacity at pH 5.05 ±0.05. The pH of solutions of this gelatin in water was also close to this value. It is inferred that such gelatin is isoelectric at this pH and not at pH 4.70. 2. Hydrogen electrode measurements with KCl-agar junctions were made with concentrated solutions of this gelatin in HCl up to 0.1 M. The combination curve calculated from these data is quite exactly horizontal between pH 2 and 1, indicating that 1 gm. of this gelatin can combine with a maximum of 9.35 x 10–4 equivalents of H+. 3. Conductivity titrations of this gelatin with HCl gave an endpoint at 9.41 (±0.05) x 10–4 equivalents of HCl per gram gelatin. 4. E.M.F. measurements of the cell without liquid junction, Ag, AgCl, HCl + gelatin, H2, lead to the conclusion that this gelatin in 0.1 M HCl combines with a maximum of 9.4 x 10–4 equivalents of H+ and 1.7 x 10–4 equivalents of Cl- per gram gelatin.  相似文献   

8.
1. Collodion bags coated with gelatin on the inside were filled with a M/256 solution of neutral salt (e.g., NaCl, CaCl2, CeCl3, or Na2SO4) made up in various concentrations of HNO3 (varying from N/50,000 to N/100). Each collodion bag was put into an HNO3 solution of the same concentration as that inside the bag but containing no salt. In this case water diffuses from the outside solution (containing no salt) into the inside solution (containing the salt) with a relative initial velocity which can be expressed by the following rules: (a) Water diffuses into the salt solution as if the particles of water were negatively charged and as if they were attracted by the cation and repelled by the anion of the salt with a force increasing with the valency of the ion. (b) The initial rate of the diffusion of water is a minimum at the hydrogen ion concentration of about N/50,000 HCl (pH 4.7, which is the point at which gelatin is not ionized), rises with increasing hydrogen ion concentration until it reaches a maximum and then diminishes again with a further rise in the initial hydrogen ion concentration. 2. The potential differences between the salt solution and the outside solution (originally free from salt) were measured after the diffusion had been going on for 1 hour; and when these values were plotted as ordinates over the original pH as abscissae, the curves obtained were found to be similar to the osmotic rate curves. This confirms the view expressed by Girard) Bernstein, Bartell, and Freundlich that these cases of anomalous osmosis are in reality cases of electrical endosmose where the driving force is a P.D. between the opposite sides of the membrane. 3. The question arose as to the origin of these P. D. and it was found that the P.D. has apparently a double origin. Certain features of the P.D. curve, such as the rise and fall with varying pH, seem to be the consequence of a Donnan equilibrium which leads to some of the free HNO3 being forced from the solution containing salt into the outside solution containing no (or less) salt. This difference of the concentration of HNO3, on the opposite sides of the membrane leads to a P.D. which in conformity with Nernst''s theory of concentration cells should be equal to 58 x (pH inside minus pH outside) millivolts at 18°C. The curves of the values of (pH inside minus pH outside) when plotted as ordinates over the original pH as abscissae lead to curves resembling those for the P. D. in regard to location of minimum and maximum. 4. A second source of the P.D. seems to be diffusion potentials, which exist even if no membranes are present and which seem to be responsible for the fact that the rate of diffusion of negatively charged water into the salt solution increases with the valency of the cation and diminishes with the valency of the anion of the salt. 5. The experiments suggest the possibility that the establishment of a Donnan equilibrium between membrane and solution is one of the factors determining the Helmholtzian electrical double layer, at least in the conditions of our experiments.  相似文献   

9.
1. By the use of the silver-silver chloride electrode, measurements have been made of the chloride ion concentrations of 1 per cent solutions of five proteins, containing from 0.001 N to 0.1 N hydrochloric acid. The hydrogen ion concentrations of the same solutions have been measured by the use of the hydrogen electrode. 2. The measurements indicate that the chlorides of gelatin, egg albumin, casein, edestin, and serum globulin are highly ionized electrolytes, ionizing to yield chloride ion and a positive protein-hydrogen ion. Their ionization is therefore similar to that of ammonium chloride. 3. The results do not support the idea that a protein chloride does not yield chloride ion on dissociation. They are not in agreement with the idea that the depressing effect of an excess of HCl on the viscosity and other colloidal properties of a protein chloride solution is due to a repression of the ionization of the protein chloride. The results are, however, in complete accord with the theory of colloidal behavior advocated by Loeb.  相似文献   

10.
1.25 per cent gelatin solutions containing enough NaOH to bring them to pH 7.367 (or KOH to pH 7.203) were made up with various concentrations of NaCl, KCl and MgCl2, alone and in mixtures, up to molar ionic strength. The effects of these salts on the pH were observed. MgCl2 and NaCl alone lower the pH of the Na gelatinate or the K gelatinate, in all amounts of these salts. KCl first lowers the pH (up to 0.01 M K+), then raises the pH. Mixtures of NaCl and KCl (up to 0.09 M of the salt whose concentration is varied) raise the pH; then (up to 0.125 M Na+ or K+) lower the pH; and finally (above 0.125 M) behave like KCl alone. Mixtures of MgCl2 and NaCl raise the pH up to 0.10 M Na+, and lower it up to 0.15 M Na+ regardless of the amount of MgCl 2. Higher concentrations of NaCl have little effect, but the pH in this range of NaCl concentration is lowered with increase of MgCl2. Mixtures of MgCl2 and KCl behave as above described (for MgCl2 and NaCl) and the addition of NaCl plus KCl to gelatin containing MgCl2 produces essentially the same effect as the addition of either alone, except that the first two breaks in this curve come at 0.07 M and 0.08 M [Na+ + K+] and there is a third break at 0.12 M. In this pH range the free groups of the dicarboxylic acids and of lysine are essentially all ionized and the prearginine and histidine groups are essentially all non-ionized. The arginine group is about 84 per cent ionized. Hence we are studying a solution with two ionic species in equilibrium, one with the arginine group ionized, and one with it non-ionized. It is shown that the effect of each salt alone depends upon the effect of the cation on the activity of these two species due to combination. The anomalous effects of cation mixtures may be qualitatively accounted for if one or both of these species fail to combine with the cations in a mixture in proportion to the relative combination in solutions of each cation alone. Special precautions were taken to ensure accuracy in the pH measurements. The mother solutions gave identical readings to 0.001 pH and the readings with salts were discarded when not reproducible to 0.003 pH. All doubtful data were discarded.  相似文献   

11.
1. When solutions of KCl, NaCl, or LiCl are separated from water without salt by a collodion-gelatin membrane and when the pH of both salt solution and water are on the acid side of the isoelectric point of gelatin, water diffuses from the side of pure water into the salt solution at a rate increasing inversely with the radius of the cations. 2. The adsorption theory would lead us to assume that this influence of the cations is due to an increase of the P.D. between the liquid and the membrane inside the pores of the gelatin film of the membrane, but direct measurements of this P.D. contradict such an assumption, since they show that the influence of the three salts on this P.D. is identical at pH 3.0. 3. It is found, however, that the P.D. across the membrane is affected in a similar way by the three cations as is the transport of water through the membrane. 4. This P.D. across the membrane varies inversely as the relative mobility of the three cations which suggests that the influence of the three cations on the diffusion of liquid through the membrane is partly if not essentially due to a diffusion potential.  相似文献   

12.
In measurements of P.D. across the protoplasm in single cells, the presence of parallel circuits along the cell wall may cause serious difficulty. This is particularly the case with marine algae, such as Valonia, where the cell wall is imbibed with a highly conducting solution (sea water), and hence has low electrical resistance. In potential measurements on such material, it is undesirable to use methods in which the surface of the cell is brought in contact with more than one solution at a time. The effect of a second solution wetting a part of the cell surface is discussed, and demonstrated by experiment. From further measurements with improved technique, we find that the value previously reported for the P.D. of the chain Valonia sap | Valonia protoplasm | Valonia sap is too low, and also that the P.D. undergoes characteristic changes during experiments lasting several hours. The maximum P.D. observed is usually between 25 and 35 mv., but occasionally higher values (up to 82 mv.) are found. The appearance of the cells several days after the experiment, and the P.D.''s which they give with sea water, indicate that no permanent injury has been received as a result of exposure to artificial sap. If such cells are used in a second measurement with artificial sap, however, the form of the P.D.-time curve indicates that the cells have undergone an alteration which persists for a long time. On the basis of the theory of protoplasmic layers, an attempt has been made to explain the observed changes in P.D. with time, assuming that these changes are due to penetration of KCl into the main body of the protoplasm.  相似文献   

13.
1. When a solution of a salt of gelatin or crystalline egg albumin is separated by a collodion membrane from a watery solution (free from protein) a potential difference is set up across the membrane in which the protein is positively charged in the case of protein-acid salts and in which the protein is negatively charged in the case of metal proteinates. The turning point is the isoelectric point of the protein. 2. Measurements of the pH of the (inside) protein solution and of the outside watery solution show that when equilibrium is established the value pH inside minus pH outside is positive in the case of protein-acid salts and negative in the case of metal proteinates. This is to be expected when the P.D. is caused by the establishment of a Donnan equilibrium, since in that case the pH should be lower outside than inside in the case of a protein-acid salt and should be higher outside than inside in the case of a metal proteinate. 3. At the isoelectric point where the electrical charge is zero the value of pH inside minus pH outside becomes also zero. 4. It is shown that a P.D. is established between suspended particles of powdered gelatin and the surrounding watery solution and that the sign of charge of the particles is positive when they contain gelatin-acid salts, while it is negative when the powdered particles contain metal gelatinate. At the isoelectric point the charge is zero. 5. Measurements of the pH inside the powdered particles and of the pH in the outside watery solution show that when equilibrium is established the value pH inside minus pH outside is positive when the powdered particles contain a gelatin-acid salt, while the value pH inside minus pH outside is negative when the powdered particles contain Na gelatinate. At the isoelectric point the value pH inside minus pH outside is zero. 6. The addition of neutral salts depresses the electrical charge of the powdered particles of protein-acid salts. It is shown that the addition of salts to a suspension of powdered particles of gelatin chloride also diminishes the value of pH inside minus pH outside. 7. The agreement between the values 58 (pH inside minus pH outside) and the P. D. observed by the Compton electrometer is not only qualitative but quantitative. This proves that the difference in the concentration of acid (or alkali, as the case may be) in the two phases is the only cause for the observed P.D. 8. The Donnan theory demands that the P.D. of a gelatin chloride solution should be 1½ times as great as the P.D. of a gelatin sulfate solution of the same pH and the same concentration (1 per cent) of originally isoelectric gelatin. This is found to be correct and it is also shown that the values of pH inside minus pH outside for the two solutions possess the ratio of 3:2. 9. All these measurements prove that the electrical charges of suspended particles of protein are determined exclusively by the Donnan equilibrium.  相似文献   

14.
1. It has been shown in previous publications that when solutions of different concentrations of salts are separated by collodion-gelatin membranes from water, electrical forces participate in addition to osmotic forces in the transport of water from the side of the water to that of the solution. When the hydrogen ion concentration of the salt solution and of the water on the other side of the membrane is the same and if both are on the acid side of the isoelectric point of gelatin (e.g. pH 3.0), the electrical transport of water increases with the valency of the cation and inversely with the valency of the anion of the salt in solution. Moreover, the electrical transport of water increases at first with increasing concentration of the solution until a maximum is reached at a concentration of about M/32, when upon further increase of the concentration of the salt solution the transport diminishes until a concentration of about M/4 is reached, when a second rise begins, which is exclusively or preeminently the expression of osmotic forces and therefore needs no further discussion. 2. It is shown that the increase in the height of the transport curves with increase in the valency of the cation and inversely with the increase in the valency of the anion is due to the influence of the salt on the P.D. (E) across the membrane, the positive charge of the solution increasing in the same way with the valency of the ions mentioned. This effect on the P.D. increases with increasing concentration of the solution and is partly, if not essentially, the result of diffusion potentials. 3. The drop in the transport curves is, however, due to the influence of the salts on the P.D. (ε) between the liquid inside the pores of the gelatin membrane and the gelatin walls of the pores. According to the Donnan equilibrium the liquid inside the pores must be negatively charged at pH 3.0 and this charge is diminished the higher the concentration of the salt. Since the electrical transport is in proportion to the product of E x ε and since the augmenting action of the salt on E begins at lower concentrations than the depressing action on ε, it follows that the electrical transport of water must at first rise with increasing concentration of the salt and then drop. 4. If the Donnan equilibrium is the sole cause for the P.D. (ε) between solid gelatin and watery solution the transport of water through collodion-gelatin membranes from water to salt solution should be determined purely by osmotic forces when water, gelatin, and salt solution have the hydrogen ion concentration of the isoelectric point of gelatin (pH = 4.7). It is shown that this is practically the case when solutions of LiCl, NaCl, KCl, MgCl2, CaCl2, BaCl2, Na2SO4, MgSO4 are separated by collodion-gelatin membranes from water; that, however, when the salt has a trivalent (or tetravalent?) cation or a tetravalent anion a P.D. between solid isoelectric gelatin and water is produced in which the wall assumes the sign of charge of the polyvalent ion. 5. It is suggested that the salts with trivalent cation, e.g. Ce(NO3)3, form loose compounds with isoelectric gelatin which dissociate electrolytically into positively charged complex gelatin-Ce ions and negatively charged NO3 ions, and that the salts of Na4Fe(CN)6 form loose compounds with isoelectric gelatin which dissociate electrolytically into negatively charged complex gelatin-Fe(CN)6 ions and positively charged Na ions. The Donnan equilibrium resulting from this ionization would in that case be the cause of the charge of the membrane.  相似文献   

15.
The potential difference across the protoplasm of impaled cells of Halicystis is not affected by increase of oxygen tension in equilibrium with the sea water, nor with decrease down to about 1/10 its tension in the air (2 per cent O2 in N2). When bubbling of 2 per cent O2 is stopped, the P.D. drifts downward, to be restored on stirring the sea water, or rebubbling the gas. Bubbling 0.2 per cent O2 causes the P.D. to drop to 20 mv. or less; 1.1 per cent O2 to about 50 mv. Restoration of 2 per cent or higher O2 causes recovery to 70 or 80 mv. often with a preliminary cusp which decreases the P.D. before it rises. Perfusion of aerated sea water through the vacuole is just as effective in restoring the P.D. as external aeration, indicating that the direction of the oxygen gradient is not significant. Low O2 tension also inhibits the reversed, negative P.D. produced by adding NH4Cl to sea water, 0.2 per cent O2 bringing this P.D. back to the same low positive values found without ammonia. Restoration of 2 per cent O2 or air, restores this latent negativity. At slightly below the threshold for ammonia reversal, low O2 may induce a temporary negativity when first bubbled, and a negative cusp may occur on aeration before positive P.D. is regained. This may be due to a decreased consumption of ammonia, or to intermediate pH changes. The locus of the P.D. alteration was tested by applying increased KCl concentrations to the cell exterior; the large cusps produced in aerated solutions become greatly decreased when the P.D. has fallen in 0.2 per cent O2. This indicates that the originally high relative mobility or concentration of K+ ion has approached that of Na+ in the external protoplasmic surface under reduced O2 tension. Results obtained with sulfate sea water indicate that Na+ mobility approaches that of SO4 in 0.2 per cent O2. P.D. measurements alone cannot tell whether this is due to an increase of the slower ion or a decrease of the faster ion. A decrease of all ionic permeability is indicated, however, by a greatly increased effective resistance to direct current during low O2. Low resistance is regained on aeration. The resistance increase resembles that produced by weak acids, cresol, etc. Acids or other substances produced in anaerobiosis may be responsible for the alteration. Or a deficiency of some surface constituent may develop. In addition to the surface changes there may be alterations in gradients of inorganic or organic ions within the protoplasm, but there is at present no evidence on this point. The surface changes are probably sufficient to account for the phenomena.  相似文献   

16.
1. In the presence of 0.05 per cent dextrose the respiration of Aspergillus niger is increased by NaCl in concentrations of 0.25 to 0.5M, and by 0.5M CaCl2. 2. Stronger concentrations, as 2M NaCl and 1.25M CaCl2, decrease the respiration. The decrease in the higher concentrations is probably an osmotic effect of these salts. 3. A mixture of 19 cc. of NaCl and 1 cc. of CaCl2 (both 0.5M) showed antagonism, in that the respiration was normal, although each salt alone caused an increase. 4. Spores of Aspergillus niger did not germinate on 0.5M NaCl (plus 0.05 per cent dextrose) while they did on 0.5M CaCl2 (plus 0.05 per cent dextrose) and on various mixtures of the two. This shows that a substance may have different effects on respiration from those which it has upon growth.  相似文献   

17.
The thrombin binding aptamer (TBA) possesses promising antiproliferative properties. However, its development as an anticancer agent is drastically impaired by its concomitant anticoagulant activity. Therefore, suitable chemical modifications in the TBA sequence would be required in order to preserve its antiproliferative over anticoagulant activity. In this paper, we report structural investigations, based on circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR), and biological evaluation of four pairs of enantiomeric heterochiral TBA analogues. The four TBA derivatives of the d-series are composed by d-residues except for one l-thymidine in the small TT loops, while their four enantiomers are composed by l-residues except for one d-thymidine in the same TT loop region. Apart from the left-handedness for the l-series TBA derivatives, CD and NMR measurements have shown that all TBA analogues are able to adopt the antiparallel, monomolecular, ‘chair-like’ G-quadruplex structure characteristic of the natural D-TBA. However, although all eight TBA derivatives are endowed with remarkable cytotoxic activities against colon and lung cancer cell lines, only TBA derivatives of the l-series show no anticoagulant activity and are considerably resistant in biological environments.  相似文献   

18.
The pH of a 0.01 molar solution of glycine, half neutralized with NaOH, is 9.685. Addition of only one of the salts NaCl, KCl, MgCl2, or CaCl2 will lower the pH of the solution (at least up to 1 µ). If a given amount of KCl is added to a glycine solution, the subsequent addition of increasing amounts of NaCl will first raise the pH (up to 0.007 M NaCl). Further addition of NaCl (up to 0.035 M NaCl) will lower the pH, and further additions slightly raise the pH. The same type of curve is obtained by adding NaCl to glycine solution containing MgCl2 or CaCl2 except that the first and second breaks occur at 0.015 M and 0.085 M NaCl, respectively. Addition of CaCl2 to a glycine solution containing MgCl2 gives the same phenomena with breaks at 0.005 M and 0.025 M CaCl; or at ionic strengths of 0.015 µCaCl2 and 0.075 µCaCl2. This indicates that the effect is a function of the ionic strength of the added salt. These effects are sharp and unmistakable. They are almost identical with the effects produced by the same salt mixtures on the pH of gelatin solutions. They are very suggestive of physiological antagonisms, and at the same time cannot be attributed to colloidal phenomena.  相似文献   

19.
1. The effect of eight salts, NaCl, Na2SO4, Na4Fe(CN)6, CaCl2, LaCl3, ThCl4, and basic and acid fuchsin on the cataphoretic P.D. between solid particles and aqueous solutions was measured near the point of neutrality of water (pH 5.8). It was found that without the addition of electrolyte the cataphoretic P.D. between particles and water is very minute near the point of neutrality (pH 5.8), often less than 10 millivolts, if care is taken that the solutions are free from impurities. Particles which in the absence of salts have a positive charge in water near the point of neutrality (pH 5.8) are termed positive colloids and particles which have a negative charge under these conditions are termed negative colloids. 2. If care is taken that the addition of the salt does not change the hydrogen ion concentration of the solution (which in these experiments was generally pH 5.8) it can be said in general, that as long as the concentration of salts is not too high, the anions of the salt have the tendency to make the particles more negative (or less positive) and that cations have the opposite effect; and that both effects increase with the increasing valency of the ions. As soon as a maximal P.D. is reached, which varies for each salt and for each type of particles, a further addition of salt depresses the P.D. again. Aside from this general tendency the effects of salts on the P.D. are typically different for positive and negative colloids. 3. Negative colloids (collodion, mastic, Acheson''s graphite, gold, and metal proteinates) are rendered more negative by low concentrations of salts with monovalent cation (e.g. Na) the higher the valency of the anion, though the difference in the maximal P.D. is slight for the monovalent Cl and the tetravalent Fe(CN)6 ions. Low concentrations of CaCl2 also make negative colloids more negative but the maximal P.D. is less than for NaCl; even LaCl3 increases the P.D. of negative particles slightly in low concentrations. ThCl4 and basic fuchsin, however, seem to make the negative particles positive even in very low concentrations. 4. Positive colloids (ferric hydroxide, calcium oxalate, casein chloride—the latter at pH 4.0) are practically not affected by NaCl, are rendered slightly negative by high concentrations of Na2SO4, and are rendered more negative by Na4Fe(CN)6 and acid dyes. Low concentrations of CaCl2 and LaCl3 increase the positive charge of the particles until a maximum is reached after which the addition of more salt depresses the P.D. again. 5. It is shown that alkalies (NaOH) act on the cataphoretic P.D. of both negative and positive particles as Na4Fe(CN)6 does at the point of neutrality. 6. Low concentrations of HCl raise the cataphoretic P.D. of particles of collodion, mastic, graphite, and gold until a maximum is reached, after which the P.D. is depressed by a further increase in the concentration of the acid. No reversal in the sign of charge of the particle occurs in the case of collodion, while if a reversal occurs in the case of mastic, gold, and graphite, the P.D. is never more than a few millivolts. When HCl changes the chemical nature of the colloid, e.g. when HCl is added to particles of amphoteric electrolytes like sodium gelatinate, a marked reversal will occur, on account of the transformation of the metal proteinate into a protein-acid salt. 7. A real reversal in the sign of charge of positive particles occurs, however, at neutrality if Na4Fe(CN)6 or an acid dye is added; and in the case of negative colloids when low concentrations of basic dyes or minute traces of ThCl4 are added. 8. Flocculation of the suspensions by salts occurs when the cataphoretic P.D. reaches a critical value which is about 14 millivolts for particles of graphite, gold, or mastic or denatured egg albumin; while for collodion particles it was about 16 millivolts. A critical P.D. of about 15 millivolts was also observed by Northrop and De Kruif for the flocculation of certain bacteria.  相似文献   

20.
The P.D. across the protoplasm of Valonia macrophysa has been studied while the cells were exposed to artificial solutions resembling sea water in which the concentration of KCl was varied from 0 to 0.500 mol per liter. The P.D. across the protoplasm is decreased by lowering and increased by raising the concentration of KCl in the external solution. Changes in P.D. with time when the cell is treated with KCl-rich sea water resemble those observed with cells exposed to Valonia sap. Varying the reaction of natural sea water from pH 5 to pH 10 has no appreciable effect on the P.D. across Valonia protoplasm. Similarly, varying the pH of KCl-rich sea water within these limits does not alter the height of the first maximum in the P.D.-time curve. The subsequent behavior of the P.D., however, is considerably affected by the pH of the KCl-rich sea water. These changes in the shape of the P.D.-time curve have been interpreted as indicating that potassium enters Valonia protoplasm more rapidly from alkaline than from acidified KCl-rich sea water. This conclusion is discussed in relation to certain theories which have been proposed to explain the accumulation of KCl in Valonia sap. The initial rise in P.D. when a Valonia cell is transferred from natural sea water to KCl-rich sea water has been correlated with the concentrations of KCl in the sea waters. It is assumed that the observed P.D. change represents a diffusion potential in the external surface layer of the protoplasm, where the relative mobilities of ions may be supposed to differ greatly from their values in water. Starting with either Planck''s or Henderson''s formula, an equation has been derived which expresses satisfactorily the observed relationship between P.D. change and concentration of KCl. The constants of this equation are interpreted as the relative mobilities of K+, Na+, and Cl- in the outer surface layer of the protoplasm. The apparent relative mobility of K+ has been calculated by inserting in this equation the values for the relative mobilities of Na+ (0.20) and Cl- (1.00) determined from earlier measurements of concentration effect with natural sea water. The average value for the relative mobility of K+ is found to be about 20. The relative mobility may vary considerably among different individual cells, and sometimes also in the same individual under different conditions. Calculation of the observed P.D. changes as phase-boundary potentials proved unsatisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号